Novel Constructions for Computation and Communication Trade-offs in Private Coded Distributed Computing

Distributed computing enables scalable machine learning by distributing tasks across multiple nodes, but ensuring privacy in such systems remains a challenge. This paper introduces a novel private coded distributed computing model that integrates privacy constraints to keep task assignments hidden....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on communications s. 1
Hlavní autoři: Sasi, Shanuja, Gunlu, Onur
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 2025
Témata:
ISSN:0090-6778, 1558-0857
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Distributed computing enables scalable machine learning by distributing tasks across multiple nodes, but ensuring privacy in such systems remains a challenge. This paper introduces a novel private coded distributed computing model that integrates privacy constraints to keep task assignments hidden. By leveraging placement delivery arrays (PDAs), we design an extended PDA framework to characterize achievable computation and communication loads under privacy constraints. By constructing two classes of extended PDAs, we explore the trade-offs between computation and communication, showing that although privacy increases communication overhead, it can be significantly alleviated through optimized PDA-based coded strategies.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2025.3631533