Robust Collaborative Dynamic Parameter Estimation for Multirobot Systems: A Distributed Variational Inference-Based Approach
Accurate system identification is crucial for model-based control, planning, and algorithm training. Although numerous robotic model structures have been established, the specific parameter values within these models still require further estimation in practical applications. Meanwhile, with the rap...
Saved in:
| Published in: | IEEE/ASME transactions on mechatronics pp. 1 - 12 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
2025
|
| Subjects: | |
| ISSN: | 1083-4435, 1941-014X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurate system identification is crucial for model-based control, planning, and algorithm training. Although numerous robotic model structures have been established, the specific parameter values within these models still require further estimation in practical applications. Meanwhile, with the rapid development of multirobot systems, leveraging collaboration among robots to enhance parameter estimation accuracy and accelerate convergence becomes a viable approach. To this end, a new collaborative parameter estimation strategy is proposed in this article, allowing decentralized fusion estimation and distributed computations. Meanwhile, this decentralized and distributed framework is able to achieve comparable results to centralized estimation that collects measurements from all robots and directly estimate the posterior in a single computing unit. To enhance the robustness against environmental disturbance containing outliers, the robust local estimator is designed based on mean-field variational inference. Finally, we employ autonomous surface vehicles as research subject and conduct a series of experiments to demonstrate the effectiveness of proposed approach. |
|---|---|
| AbstractList | Accurate system identification is crucial for model-based control, planning, and algorithm training. Although numerous robotic model structures have been established, the specific parameter values within these models still require further estimation in practical applications. Meanwhile, with the rapid development of multirobot systems, leveraging collaboration among robots to enhance parameter estimation accuracy and accelerate convergence becomes a viable approach. To this end, a new collaborative parameter estimation strategy is proposed in this article, allowing decentralized fusion estimation and distributed computations. Meanwhile, this decentralized and distributed framework is able to achieve comparable results to centralized estimation that collects measurements from all robots and directly estimate the posterior in a single computing unit. To enhance the robustness against environmental disturbance containing outliers, the robust local estimator is designed based on mean-field variational inference. Finally, we employ autonomous surface vehicles as research subject and conduct a series of experiments to demonstrate the effectiveness of proposed approach. |
| Author | Wen, Guanghui Shen, Han |
| Author_xml | – sequence: 1 givenname: Han orcidid: 0000-0003-3461-1603 surname: Shen fullname: Shen, Han email: shenhan@seu.edu.cn organization: Department of Systems Science, Southeast University, Nanjing, China – sequence: 2 givenname: Guanghui orcidid: 0000-0003-0070-8597 surname: Wen fullname: Wen, Guanghui email: wenguanghui@gmail.com organization: School of Automation, Southeast University, Nanjing, China |
| BookMark | eNpFkNtKAzEQhoNUsK2-gHiRF9ia0568q2u1hRZFq3i3JNlZjOxuSpIKBR_e7QG8moH__wbmG6FBZztA6JqSCaUkv12vZsV8wgiLJzxhPOXxGRrSXNCIUPE56HeS8UgIHl-gkfffhBBBCR2i31ertj7gwjaNVNbJYH4AP-w62RqNX6STLQRweOaDafvQdri2Dq-2TTDOKhvw284HaP0dnuIH44Mzahugwh_SmUNfNnjR1eCg0xDdS99n083GWam_LtF5LRsPV6c5Ru-Ps3Uxj5bPT4tiuow05UmIUqETzkFqleaaJ4oTSGJZEcl0kmR5pRRLNWOiqrVMs4yIWmgFlOmUxpSRlI8RO97VznrvoC43rv_G7UpKyr2_8uCv3PsrT_566OYIGQD4ByjjlPSFPzfncQ8 |
| CODEN | IATEFW |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TMECH.2025.3623735 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore Digital Libary (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-014X |
| EndPage | 12 |
| ExternalDocumentID | 10_1109_TMECH_2025_3623735 11231037 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province of China grantid: BK20253020 – fundername: National Natural Science Foundation of China grantid: 62325304; U22B2046; 624B2037 funderid: 10.13039/501100001809 – fundername: Key Research and Development Program of Zhejiang Province grantid: 2025C01055 – fundername: Jiangsu Provincial Scientific Research Center of Applied Mathematics grantid: BK20233002 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACKIV AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P IFIPE IPLJI JAVBF LAI OCL RIA RIE RNS TN5 5VS 9M8 AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IFJZH M43 VH1 |
| ID | FETCH-LOGICAL-c136t-74c633eacb79c36b30e65ad0a2c6689dbb27c224dfca78804f4cbe12c71512073 |
| IEDL.DBID | RIE |
| ISSN | 1083-4435 |
| IngestDate | Sat Nov 29 06:55:21 EST 2025 Wed Nov 19 08:26:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c136t-74c633eacb79c36b30e65ad0a2c6689dbb27c224dfca78804f4cbe12c71512073 |
| ORCID | 0000-0003-3461-1603 0000-0003-0070-8597 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_11231037 crossref_primary_10_1109_TMECH_2025_3623735 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE/ASME transactions on mechatronics |
| PublicationTitleAbbrev | TMECH |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0004101 |
| Score | 2.4344802 |
| Snippet | Accurate system identification is crucial for model-based control, planning, and algorithm training. Although numerous robotic model structures have been... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Autonomous surface vehicle (ASV) Collaboration Estimation Heuristic algorithms Multi-robot systems multirobot systems Noise measurement Parameter estimation Robots Robustness variational inference Vehicle dynamics |
| Title | Robust Collaborative Dynamic Parameter Estimation for Multirobot Systems: A Distributed Variational Inference-Based Approach |
| URI | https://ieeexplore.ieee.org/document/11231037 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-014X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004101 issn: 1083-4435 databaseCode: RIE dateStart: 19960101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RigEGnkWUlzywobTOo3HNVvpQGagqVFC3yPFDYmlQm3bix3N2XLULA0OkKHKk6M6--87xdx_AY0oNZYaagCqNBUpolxQ13UAKitNZMI2XE5tgk0l3PudTT1Z3XBittTt8plv21v3LV4Vc262yNmIDK4vFalBjjFVkrR0JMnRaxyFiiiBBELBlyFDenr0N-2OsBaNOC-N1zJy22y4L7cmquKwyOv3n95zBiYePpFf5-xwO9OICjveaCl7Cz3uRr1cl6e88vNFkUCnPk6mwp7HQmGSIi7viLRIErsQxcZdFXpTEdzF_Jj0ysH11rSSWVuQTy2q_dUhetzzB4AXToCI935q8AR-j4aw_DrzGQiDDOC0Dlsg0jjH65ozLOM1jqtOOUFREMk27XOV5xCSmeWWkwGqZJiaRuQ4jySxUwPhwBfVFsdDXQKJEMNOhGC8NpjyO443goRZhrLgQijXhaWvz7LtqpZG5EoTyzHkosx7KvIea0LAG3430tr754_ktHNnXq92RO6iXy7W-h0O5Kb9Wywc3VX4BEc2-sQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIAEDzyLK0wMbSrHzcs1W-lAr2qpCBXWLHD8klga1aSd-PGcnVbswMESKIiuK7uy77xx_9yH0GBNDmCHGI0pDgULtkiKm4UlBYDoLpuFyYhNsNGpMp3xcktUdF0Zr7Q6f6bq9df_yVSaXdqvsGbCBlcViu2gvCkOfFnStDQ2SOrVjCqjCCwEGrDkyhD9Php1WD6pBP6pDxA6YU3fb5KEtYRWXV7on__yiU3RcAkjcLDx-hnb07BwdbbUVvEA_71m6XOS4tfHxSuN2oT2Px8KexwJz4g4s74K5iAG6YsfFnWdpluOyj_kLbuK27axrRbG0wp9QWJebh7i_Zgp6r5AIFW6Wzcmr6KPbmbR6Xqmy4EkaxLnHQhkHAcTflHEZxGlAdBwJRYQv47jBVZr6TEKiV0YKqJdJaEKZaupLZsECRIhLVJllM32FsB8KZiICEdNA0uMw3ghOtaCB4kIoVkNPa5sn30UzjcQVIYQnzkOJ9VBSeqiGqtbgm5Glra__eP6ADnqT4SAZ9EdvN-jQvqrYK7lFlXy-1HdoX67yr8X83k2bXyaIwfg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Collaborative+Dynamic+Parameter+Estimation+for+Multirobot+Systems%3A+A+Distributed+Variational+Inference-Based+Approach&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Shen%2C+Han&rft.au=Wen%2C+Guanghui&rft.date=2025&rft.pub=IEEE&rft.issn=1083-4435&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTMECH.2025.3623735&rft.externalDocID=11231037 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon |