Robust Collaborative Dynamic Parameter Estimation for Multirobot Systems: A Distributed Variational Inference-Based Approach

Accurate system identification is crucial for model-based control, planning, and algorithm training. Although numerous robotic model structures have been established, the specific parameter values within these models still require further estimation in practical applications. Meanwhile, with the rap...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/ASME transactions on mechatronics s. 1 - 12
Hlavní autoři: Shen, Han, Wen, Guanghui
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 2025
Témata:
ISSN:1083-4435, 1941-014X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate system identification is crucial for model-based control, planning, and algorithm training. Although numerous robotic model structures have been established, the specific parameter values within these models still require further estimation in practical applications. Meanwhile, with the rapid development of multirobot systems, leveraging collaboration among robots to enhance parameter estimation accuracy and accelerate convergence becomes a viable approach. To this end, a new collaborative parameter estimation strategy is proposed in this article, allowing decentralized fusion estimation and distributed computations. Meanwhile, this decentralized and distributed framework is able to achieve comparable results to centralized estimation that collects measurements from all robots and directly estimate the posterior in a single computing unit. To enhance the robustness against environmental disturbance containing outliers, the robust local estimator is designed based on mean-field variational inference. Finally, we employ autonomous surface vehicles as research subject and conduct a series of experiments to demonstrate the effectiveness of proposed approach.
AbstractList Accurate system identification is crucial for model-based control, planning, and algorithm training. Although numerous robotic model structures have been established, the specific parameter values within these models still require further estimation in practical applications. Meanwhile, with the rapid development of multirobot systems, leveraging collaboration among robots to enhance parameter estimation accuracy and accelerate convergence becomes a viable approach. To this end, a new collaborative parameter estimation strategy is proposed in this article, allowing decentralized fusion estimation and distributed computations. Meanwhile, this decentralized and distributed framework is able to achieve comparable results to centralized estimation that collects measurements from all robots and directly estimate the posterior in a single computing unit. To enhance the robustness against environmental disturbance containing outliers, the robust local estimator is designed based on mean-field variational inference. Finally, we employ autonomous surface vehicles as research subject and conduct a series of experiments to demonstrate the effectiveness of proposed approach.
Author Wen, Guanghui
Shen, Han
Author_xml – sequence: 1
  givenname: Han
  orcidid: 0000-0003-3461-1603
  surname: Shen
  fullname: Shen, Han
  email: shenhan@seu.edu.cn
  organization: Department of Systems Science, Southeast University, Nanjing, China
– sequence: 2
  givenname: Guanghui
  orcidid: 0000-0003-0070-8597
  surname: Wen
  fullname: Wen, Guanghui
  email: wenguanghui@gmail.com
  organization: School of Automation, Southeast University, Nanjing, China
BookMark eNpFkNtKAzEQhoNUsK2-gHiRF9ia0568q2u1hRZFq3i3JNlZjOxuSpIKBR_e7QG8moH__wbmG6FBZztA6JqSCaUkv12vZsV8wgiLJzxhPOXxGRrSXNCIUPE56HeS8UgIHl-gkfffhBBBCR2i31ertj7gwjaNVNbJYH4AP-w62RqNX6STLQRweOaDafvQdri2Dq-2TTDOKhvw284HaP0dnuIH44Mzahugwh_SmUNfNnjR1eCg0xDdS99n083GWam_LtF5LRsPV6c5Ru-Ps3Uxj5bPT4tiuow05UmIUqETzkFqleaaJ4oTSGJZEcl0kmR5pRRLNWOiqrVMs4yIWmgFlOmUxpSRlI8RO97VznrvoC43rv_G7UpKyr2_8uCv3PsrT_566OYIGQD4ByjjlPSFPzfncQ8
CODEN IATEFW
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TMECH.2025.3623735
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-014X
EndPage 12
ExternalDocumentID 10_1109_TMECH_2025_3623735
11231037
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province of China
  grantid: BK20253020
– fundername: National Natural Science Foundation of China
  grantid: 62325304; U22B2046; 624B2037
  funderid: 10.13039/501100001809
– fundername: Key Research and Development Program of Zhejiang Province
  grantid: 2025C01055
– fundername: Jiangsu Provincial Scientific Research Center of Applied Mathematics
  grantid: BK20233002
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACKIV
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
IFIPE
IPLJI
JAVBF
LAI
OCL
RIA
RIE
RNS
TN5
5VS
9M8
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IFJZH
M43
VH1
ID FETCH-LOGICAL-c136t-74c633eacb79c36b30e65ad0a2c6689dbb27c224dfca78804f4cbe12c71512073
IEDL.DBID RIE
ISSN 1083-4435
IngestDate Sat Nov 29 06:55:21 EST 2025
Wed Nov 19 08:26:46 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c136t-74c633eacb79c36b30e65ad0a2c6689dbb27c224dfca78804f4cbe12c71512073
ORCID 0000-0003-3461-1603
0000-0003-0070-8597
PageCount 12
ParticipantIDs ieee_primary_11231037
crossref_primary_10_1109_TMECH_2025_3623735
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE/ASME transactions on mechatronics
PublicationTitleAbbrev TMECH
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0004101
Score 2.4344802
Snippet Accurate system identification is crucial for model-based control, planning, and algorithm training. Although numerous robotic model structures have been...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Autonomous surface vehicle (ASV)
Collaboration
Estimation
Heuristic algorithms
Multi-robot systems
multirobot systems
Noise measurement
Parameter estimation
Robots
Robustness
variational inference
Vehicle dynamics
Title Robust Collaborative Dynamic Parameter Estimation for Multirobot Systems: A Distributed Variational Inference-Based Approach
URI https://ieeexplore.ieee.org/document/11231037
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-014X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004101
  issn: 1083-4435
  databaseCode: RIE
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBZxHlJQ9syG0SO3bMVvpQkaCqUEHdotixJZYGtWknfjxnJ1W7MLBFUaJE9yX3sO-7D6EHk3HhygySRIITxqwkSlNFVMiUMaGw0nqi8KsYj5PZTE5qsrrnwhhjfPOZabtDv5efF3rllso6kBs4WSyxj_aFEBVZa0uCDL3WcQg5BTyTxhuGTCA707dBbwS1YBS3wV9T4bXdtlFoR1bFR5XhyT_f5xQd1-kj7lZ4n6E9Mz9HRztDBS_Qz3uhVssS97YIrw3uV8rzeJK5biwwJh7Az13xFjEkrtgzcReFKkpcTzF_wl3cd3N1nSSWyfEnlNX10iF-2fAEyTOEwRx369HkTfQxHEx7I1JrLBAdUl4SwTSnFLyvElJTrmhgeJzlQRZpzhOZKxUJDWE-tzqDajlglmllwkgLlyqAf7hEjXkxN1euSQowoDa2UiWMaaiVsjyBBCrI4kTG1rbQ48bm6Xc1SiP1JUggU49Q6hBKa4RaqOkMvr2ytvX1H-dv0KG7vVoduUWNcrEyd-hAr8uv5eLefyq_YHS9zQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIAEDzyLK0wMbSkliJ47ZSh9qRVtVqKBuUezYEkuD2rQTP56zkypdGNiiKEqi-5J72Pfdh9CjSkJmygwn8lnoUKq5IyQRjvCoUMpjmmtLFB6y8TiazfikJKtbLoxSyjafqaY5tHv5aSZXZqnsGXIDI4vFdtFeQKnvFXStigbpWbVjD7IKeCoJNhwZlz9PR912H6pBP2iCxybMqrtVcWhLWMXGld7JP9_oFB2XCSRuFYifoR01P0dHW2MFL9DPeyZWyxy3K4zXCncK7Xk8SUw_FpgTd-H3LpiLGFJXbLm4i0xkOS7nmL_gFu6YybpGFEul-BMK63LxEA82TEHnFQJhilvlcPI6-uh1p-2-U6osONIjYe4wKkNCwP8KxiUJBXFVGCSpm_gyDCOeCuEzCYE-1TKBetmlmkqhPF8ykyyAh7hEtXk2V1emTQowIDrQXESUSqiWkjSCFMpNgogHWjfQ08bm8XcxTCO2RYjLY4tQbBCKS4QaqG4MXl1Z2vr6j_MP6KA_HQ3j4WD8doMOza2KtZJbVMsXK3WH9uU6_1ou7u1n8wtrX8EU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Collaborative+Dynamic+Parameter+Estimation+for+Multirobot+Systems%3A+A+Distributed+Variational+Inference-Based+Approach&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Shen%2C+Han&rft.au=Wen%2C+Guanghui&rft.date=2025&rft.issn=1083-4435&rft.eissn=1941-014X&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTMECH.2025.3623735&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMECH_2025_3623735
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon