Robust Energy-Efficient DRL-Based Optimization in UAV-Mounted RIS Systems with Jitter
In this letter, we propose an energy-efficient design for an unmanned aerial vehicle (UAV)-mounted reconfigurable intelligent surface (RIS) communication system with nonlinear energy harvesting (EH) and UAV jitter. A joint optimization problem is formulated to maximize the EH efficiency of the UAV-m...
Uložené v:
| Vydané v: | IEEE communications letters s. 1 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
2025
|
| Predmet: | |
| ISSN: | 1089-7798, 1558-2558 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this letter, we propose an energy-efficient design for an unmanned aerial vehicle (UAV)-mounted reconfigurable intelligent surface (RIS) communication system with nonlinear energy harvesting (EH) and UAV jitter. A joint optimization problem is formulated to maximize the EH efficiency of the UAV-mounted RIS by controlling the user powers, RIS phase shifts, and time-switching factor, subject to quality of service and practical EH constraints. The problem is nonconvex and time-coupled due to UAV angular jitter and nonlinear EH dynamics, making it intractable for conventional optimization methods. To address this, we reformulate the problem as a deep reinforcement learning (DRL) environment and develop a smoothed softmax dual deep deterministic policy gradient algorithm. The proposed method incorporates action clipping, entropy regularization, and softmax-weighted Q-value estimation to improve learning stability and exploration. Simulation results show that the proposed algorithm converges reliably under various UAV jitter levels and achieves an average EH efficiency of 45.07%, approaching the 53.09% upper bound of exhaustive search, and outperforming other DRL baselines. |
|---|---|
| ISSN: | 1089-7798 1558-2558 |
| DOI: | 10.1109/LCOMM.2025.3612448 |