Sparse Hyperspectral Band Selection Based on Expectation Maximization

Hyperspectral band selection seeks to identify a compact subset of informative spectral channels that preserves task-relevant information while mitigating the storage, transmission, and computational burdens imposed by high-dimensional data. Yet prevailing techniques face two pervasive limitations:...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on circuits and systems for video technology s. 1
Hlavní autori: Gao, Likun, Xue, Xinhui, Zheng, Haowen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 2025
Predmet:
ISSN:1051-8215, 1558-2205
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Hyperspectral band selection seeks to identify a compact subset of informative spectral channels that preserves task-relevant information while mitigating the storage, transmission, and computational burdens imposed by high-dimensional data. Yet prevailing techniques face two pervasive limitations: (i) scoring- or ranking-based methods assess bands independently, overlooking the joint dependency that determine their true utility; and (ii) combinatorial search approaches, though theoretically exhaustive, require prohibitive enumeration that is incompatible with the scale and end-to-end nature of modern deep-learning pipelines. We recast band selection as a combinatorial inference problem and propose a task-agnostic framework that embeds a learnable Band Selection Layer equipped with an Expectation-Maximization-driven Sparsity Loss The E-step efficiently enumerates the expected likelihood of all k -out-of- B band subsets via dynamic programming, thereby making implicit dependencies explicit; the M-step optimises band importances toward a provably k -sparse solution without post-hoc thresholding. Comprehensive theoretical analysis proves the absence of spurious local maxima and guarantees convergence to an exact sparse optimum. Extensive experiments on three public benchmarks (KSC, HT2013, HT2018), two auxiliary tasks (anomaly and target detection), and six classifiers demonstrate that the proposed method consistently surpasses state-of-the-art baselines. The results confirm that EM-guided sparsification not only stabilises the sparsity pattern but also yields interpretable inter-band dependency structures, making the framework a robust and broadly applicable tool for hyperspectral analysis and other sparsity-oriented vision problems.
AbstractList Hyperspectral band selection seeks to identify a compact subset of informative spectral channels that preserves task-relevant information while mitigating the storage, transmission, and computational burdens imposed by high-dimensional data. Yet prevailing techniques face two pervasive limitations: (i) scoring- or ranking-based methods assess bands independently, overlooking the joint dependency that determine their true utility; and (ii) combinatorial search approaches, though theoretically exhaustive, require prohibitive enumeration that is incompatible with the scale and end-to-end nature of modern deep-learning pipelines. We recast band selection as a combinatorial inference problem and propose a task-agnostic framework that embeds a learnable Band Selection Layer equipped with an Expectation-Maximization-driven Sparsity Loss The E-step efficiently enumerates the expected likelihood of all k -out-of- B band subsets via dynamic programming, thereby making implicit dependencies explicit; the M-step optimises band importances toward a provably k -sparse solution without post-hoc thresholding. Comprehensive theoretical analysis proves the absence of spurious local maxima and guarantees convergence to an exact sparse optimum. Extensive experiments on three public benchmarks (KSC, HT2013, HT2018), two auxiliary tasks (anomaly and target detection), and six classifiers demonstrate that the proposed method consistently surpasses state-of-the-art baselines. The results confirm that EM-guided sparsification not only stabilises the sparsity pattern but also yields interpretable inter-band dependency structures, making the framework a robust and broadly applicable tool for hyperspectral analysis and other sparsity-oriented vision problems.
Author Xue, Xinhui
Gao, Likun
Zheng, Haowen
Author_xml – sequence: 1
  givenname: Likun
  orcidid: 0000-0001-5191-5890
  surname: Gao
  fullname: Gao, Likun
  organization: Beijing Key Laboratory of Digital Media School of Computer Science and Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Xinhui
  orcidid: 0000-0003-1439-9107
  surname: Xue
  fullname: Xue, Xinhui
  organization: Beijing Key Laboratory of Digital Media School of Computer Science and Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Haowen
  surname: Zheng
  fullname: Zheng, Haowen
  organization: Beijing Key Laboratory of Digital Media School of Computer Science and Engineering, Beihang University, Beijing, China
BookMark eNpFkE9PwkAQxTcGEwH9AsZDv0BxZne23R6VIJhgPIBem6HMJjVQml0O4Ke3_Ek8zXuTeZOX30D1ml0jSj0ijBCheF6OF9_LkQZtR8YWeQZ0o_porUu1BtvrNFhMnUZ7pwYx_gAgOcr7arJoOURJZsdWQmyl2gfeJK_crJOFbDpb75rORlknnZgcThd8Xn7wod7Wv2dzr249b6I8XOdQfb1NluNZOv-cvo9f5mmFJtunxjET0DpzaJiEqOsgxDlnAKbyjitbUe4LKXhV0IrsynkhlxGSyZ33Zqj05W8VdjEG8WUb6i2HY4lQnkCUZxDlCUR5BdGFni6hWkT-A4haW8jMH_BJXGY
CODEN ITCTEM
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TCSVT.2025.3597604
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1
ExternalDocumentID 10_1109_TCSVT_2025_3597604
11122506
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
ICLAB
IFJZH
VH1
ID FETCH-LOGICAL-c136t-38aa404d6813a4e44484e4a7a6003cf8ac5c47f9e9ab94b45b8fe486414378ff3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Sat Nov 29 07:38:31 EST 2025
Wed Aug 27 01:43:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c136t-38aa404d6813a4e44484e4a7a6003cf8ac5c47f9e9ab94b45b8fe486414378ff3
ORCID 0000-0003-1439-9107
0000-0001-5191-5890
PageCount 1
ParticipantIDs ieee_primary_11122506
crossref_primary_10_1109_TCSVT_2025_3597604
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014847
Score 2.4582953
Snippet Hyperspectral band selection seeks to identify a compact subset of informative spectral channels that preserves task-relevant information while mitigating the...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Clustering algorithms
Computational efficiency
Computational modeling
Correlation
EM algorithm
Encoding
Faces
Hyperspectral band selection
hyperspectral image classification
Hyperspectral imaging
Redundancy
sparse learning
Training
Transformers
Title Sparse Hyperspectral Band Selection Based on Expectation Maximization
URI https://ieeexplore.ieee.org/document/11122506
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBZxHlpQxsyG2CL36MULXqABVSC-oWOY4jdSCt-kD8fM6OC10YWCInsqXoO1u-8_m7j5A75WTiSiMpgzymoEVC8zhn1EicHUJLmdYl85_FcCgnE_UayOqeC2Ot9ZfPbNs1fS6_mJm1Oyrr4LrE6ecKbO8KwWuy1k_KAKRXE0N_IaESN7INQyZWnXF39D7GWPAhbTN0oHlQZdvsQluyKn5X6R_983-OyWFwH6PH2t4nZMdWp-Rgq6jgGemN5his2miAEWZNpFzgiCddFdHIi96gJfB1aYsIG67UsanT8dGL_pp-BF5mk7z1e-PugAaxBGoSxleUSa0hhoLLhGmwgGEXPrXQ6NEwU0ptUgOiVFbpXEEOaS5LC5IDOkxCliU7J41qVtkLEknsDWnh1zLYXGqecJNAohRasORxi9xvwMvmdU2MzMcSsco81JmDOgtQt0jTIffbM4B2-cf3K7LvhtfHHNeksVqs7Q3ZM5-r6XJx623-Dce6qGo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQQQIGnkWUZwY25DbBTnIeoWpVRFshNaBukeM4UgfSqg_Ez-fsuNCFgSVyIieyvrPlO1---wi5E0YmrlBAGc98ymUc0MzPGFWAsyOWAGFVMr8fD4cwHotXR1a3XBittf35TDdN0-by86lamaOyFq5LnH6mwPa2kc5ydK2fpAEHqyeGHkNAAbeyNUfGF62kPXpPMBp8CJsMXejI6bKt96ENYRW7r3QP_zmiI3LgHEjvsbL4MdnS5QnZ3ygreEo6oxmGq9rrYYxZUSnn-MaTLHNvZGVv0BZ4u9C5hw1T7FhVCXlvIL8mH46ZWSdv3U7S7lEnl0BVwKIlZSAl93keQcAk1xwDL7zKWKJPw1QBUoWKx4XQQmaCZzzMoNAcIo4uUwxFwc5IrZyW-px4gL15mNvVzHUGMgoiFfBACLRhEfkNcr8GL51VVTFSG034IrVQpwbq1EHdIHWD3G9PB9rFH89vyW4vGfTT_vPw5ZLsmU9Vhx5XpLacr_Q12VGfy8lifmPt_w3AKKuz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Hyperspectral+Band+Selection+Based+on+Expectation+Maximization&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Gao%2C+Likun&rft.au=Xue%2C+Xinhui&rft.au=Zheng%2C+Haowen&rft.date=2025&rft.pub=IEEE&rft.issn=1051-8215&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCSVT.2025.3597604&rft.externalDocID=11122506
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon