Inverse Design of Ultra-Wideband Frequency Selective Surface Using a Graph based Conditional Variational Autoencoder (G-CVAE) integrated with a Physics Informed Neural Network (PINN)
This work proposes the inverse design of bandstop Frequency Selective Surface using a Graph based Conditional Variational Autoencoder (G-CVAE) integrated with a Physics-Informed Neural Network (PINN). This inverse design involves the prediction of FSS geometry that exhibits ultra-wide stopband chara...
Saved in:
| Published in: | IEEE journal on multiscale and multiphysics computational techniques pp. 1 - 10 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
2025
|
| Subjects: | |
| ISSN: | 2379-8815, 2379-8815 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This work proposes the inverse design of bandstop Frequency Selective Surface using a Graph based Conditional Variational Autoencoder (G-CVAE) integrated with a Physics-Informed Neural Network (PINN). This inverse design involves the prediction of FSS geometry that exhibits ultra-wide stopband characteristics. Initially, the graph convolutional network precisely extracts the topological and spatial relationships within the FSS geometrical design. The features of the graph and simulation results of the FSS dataset are used to train the CVAE, which maps the FSS physical structure and its electromagnetic behavior. The trained CVAE predicts the FSS geometries with desired frequency responses, while the PINN is incorporated to ensure physical feasibility. By monitoring the average relative error values, the simulated and predicted transmission coefficients are brought closer to each other. Also, similar approach is followed to enhance the angular stability and to achieve polarization independence in both TE and TM modes. A G-CVAE-PINN is constructed and trained using various random combinations of graph attributes and simulation outcomes, achieving an average inaccuracy of 3%. Further, one of the best designs from the predicted FSS designs is chosen for experimental validation. This predicted and experimentally validated bandstop FSS exhibits wide band rejection of 20 GHz ranging from 8 GHz to 28 GHz. The fabricated design exhibits polarization independence up to 75°in both normal and oblique angles. Thus, the predicted FSS designs are ideal for radome, EMI shielding, and satellite communications, providing efficient frequency filtering for 5G and beyond 5G networks. |
|---|---|
| AbstractList | This work proposes the inverse design of bandstop Frequency Selective Surface using a Graph based Conditional Variational Autoencoder (G-CVAE) integrated with a Physics-Informed Neural Network (PINN). This inverse design involves the prediction of FSS geometry that exhibits ultra-wide stopband characteristics. Initially, the graph convolutional network precisely extracts the topological and spatial relationships within the FSS geometrical design. The features of the graph and simulation results of the FSS dataset are used to train the CVAE, which maps the FSS physical structure and its electromagnetic behavior. The trained CVAE predicts the FSS geometries with desired frequency responses, while the PINN is incorporated to ensure physical feasibility. By monitoring the average relative error values, the simulated and predicted transmission coefficients are brought closer to each other. Also, similar approach is followed to enhance the angular stability and to achieve polarization independence in both TE and TM modes. A G-CVAE-PINN is constructed and trained using various random combinations of graph attributes and simulation outcomes, achieving an average inaccuracy of 3%. Further, one of the best designs from the predicted FSS designs is chosen for experimental validation. This predicted and experimentally validated bandstop FSS exhibits wide band rejection of 20 GHz ranging from 8 GHz to 28 GHz. The fabricated design exhibits polarization independence up to 75°in both normal and oblique angles. Thus, the predicted FSS designs are ideal for radome, EMI shielding, and satellite communications, providing efficient frequency filtering for 5G and beyond 5G networks. |
| Author | V, Bharathi Ramanujam, Krishnamurthy Ramanujam, Parthasarathy |
| Author_xml | – sequence: 1 givenname: Bharathi surname: V fullname: V, Bharathi email: bharathiv@iiitt.ac.in – sequence: 2 givenname: Krishnamurthy surname: Ramanujam fullname: Ramanujam, Krishnamurthy email: Ramanujam,rkrishnamurthy@iiitt.ac.in – sequence: 3 givenname: Parthasarathy surname: Ramanujam fullname: Ramanujam, Parthasarathy email: parthasarathy@nitt.edu |
| BookMark | eNpNkMtOwzAQRS0EEs8fQCy8hEWKH0mcLKtQSlEpSFBYRk48bg3FLrYL6o_xfQSoBKu5Gulc6Z59tG2dBYSOKelRSsrz65ub6qHHCMt6PGdlWZAttMe4KJOioNn2v7yLjkJ4JoRQwRghbA99juw7-AD4AoKZWew0ni6il8mTUdBIq_Clh7cV2HaN72EBbTTvgO9XXssW8DQYO8MSD71cznEjAyhcOatMNM7KBX6U3shN7q-i62qcAo9Ph0n12B-cYWMjzLyMHfdh4ryrupuvg2kDHlnt_Gv3n8DKd_gE4ofzL_j0bjSZnB2iHS0XAY429wBNLwcP1VUyvh2Oqv44aSnPY8IyKbVQIDIKTSnyRog0axrZ8jwHwouUqSZXTGdMU-gW8YJxrTRLuUpZKSg_QOy3t_UuBA-6XnrzKv26pqT-ll__yK-_5dcb-R108gsZAPgDKOMkEyn_Au0vhOc |
| CODEN | IJMMOP |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/JMMCT.2025.3629980 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2379-8815 |
| EndPage | 10 |
| ExternalDocumentID | 10_1109_JMMCT_2025_3629980 11230574 |
| Genre | orig-research |
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE JAVBF OCL RIA RIE AAYXX AGSQL CITATION EJD |
| ID | FETCH-LOGICAL-c136t-25aaf7de751eb976b7745bbac366e03842db6d2f52f1efac3823fdf243d429713 |
| IEDL.DBID | RIE |
| ISSN | 2379-8815 |
| IngestDate | Sat Nov 29 06:52:38 EST 2025 Wed Nov 19 08:26:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c136t-25aaf7de751eb976b7745bbac366e03842db6d2f52f1efac3823fdf243d429713 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_11230574 crossref_primary_10_1109_JMMCT_2025_3629980 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE journal on multiscale and multiphysics computational techniques |
| PublicationTitleAbbrev | JMMCT |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001722002 |
| Score | 2.2785897 |
| Snippet | This work proposes the inverse design of bandstop Frequency Selective Surface using a Graph based Conditional Variational Autoencoder (G-CVAE) integrated with... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | 5G and beyond 5G applications Accuracy Autoencoders Computer architecture Conditional Variational Autoencoder Feature extraction Frequency Selective Surface Geometry Inverse design Microprocessors Optimization Physics-Informed Neural Network Shielding Effectiveness Training Vectors |
| Title | Inverse Design of Ultra-Wideband Frequency Selective Surface Using a Graph based Conditional Variational Autoencoder (G-CVAE) integrated with a Physics Informed Neural Network (PINN) |
| URI | https://ieeexplore.ieee.org/document/11230574 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2379-8815 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001722002 issn: 2379-8815 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4qHry4izvv4EGRaJt0y3EYnVHBIrjeStK8gCBT6XQE_5i_zyTtuBw8eCuhKQlfmrd97z1CDmKWuXgmp1mkAmr1W6RCoaaZMIInJSZolG82keZ59vQkbrpkdZ8Lg4iefIYn7tHH8nVVTpyr7NTqBvZ4ptEsmU3TpE3W-naopMwRDqaJMYE4vbq-7t9ZE5DFJ_aatnZF8Ev4_Oim4oXJYOmfy1gmi53WCL0W5hUyg6NVstRpkND9n-M18uHKZtRjhDNPzIDKwP1LU0v6-KxRyZGGQd1yp9_h1nfAsZcd3E5qI0sETx8ACUNXxBqcfNPQr1xM2_sL4cHa1Z3vEHqTpnI1MDXWcDik_Yfe-RF81Z7Q4Py79lOeYFqOoc16suOuGIidnrfsczi8uczzo3VyPzi_61_QrjMDLUOeNJTFUppUYxqHqKxCo6wSGSslS54kGPAsYlolmpmYmRDtDlyw0WjDIq6t_LN28QaZG1Uj3CQglRSoueJcY6SFksgDGcZlliqRSBZukeMpZMVrW4Cj8IZLIAoPcOEALjqAt8i6w-v7zQ6q7T_Gd8iCm976VHbJXFNPcI_Ml2_N87je9wfsEwES0mk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTuQwELXYJLgMMMMIhq0OcwAhQ2Jn87HV0KwdIdEw3CI7LktIow5Kp5Hmx-b7sJ2wHThwi6zEsvUc1_aqipDfMctcPJPTLFIBtfotUqFQ00wYwZMSEzTKN5tI8zy7vxfXXbK6z4VBRE8-w0P36GP5uiqnzlV2ZHUDezzTaJbMx1HEgjZd682lkjJHOXhJjQnE0cVw2B9ZI5DFh_aitpZF8EH8vOun4sXJYPmLC1kh3zq9EXot0KtkBsffyXKnQ0L3h05-kP-ucEY9QTj21AyoDNz-bWpJ_zxoVHKsYVC37Ol_cON74NjrDm6mtZElgicQgIRTV8YanITT0K9cVNt7DOHOWtad9xB606ZyVTA11rB3Svt3vZN9eK0-ocF5eO1UnmJaTqDNe7LjrhyI_Txv-eewd32e5_tr5HZwMuqf0a43Ay1DnjSUxVKaVGMah6isSqOsGhkrJUueJBjwLGJaJZqZmJkQ7Q5cuNFowyKurQS0lvFPMjeuxrhOQCopUHPFucZICyWRBzKMyyxVIpEs3CAHL5AVj20JjsKbLoEoPMCFA7joAN4gaw6vtzc7qH59Mr5LFs9Gw6vi6jy_3CRLbqrWw7JF5pp6ittkoXxqHib1jj9szxZQ1bA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+Design+of+Ultra-Wideband+Frequency+Selective+Surface+Using+a+Graph+based+Conditional+Variational+Autoencoder+%28G-CVAE%29+integrated+with+a+Physics+Informed+Neural+Network+%28PINN%29&rft.jtitle=IEEE+journal+on+multiscale+and+multiphysics+computational+techniques&rft.au=V%2C+Bharathi&rft.au=Ramanujam%2C+Krishnamurthy&rft.au=Ramanujam%2C+Parthasarathy&rft.date=2025&rft.pub=IEEE&rft.eissn=2379-8815&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FJMMCT.2025.3629980&rft.externalDocID=11230574 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8815&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8815&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8815&client=summon |