Intelligent Scheduling Method for Cascade Reservoirs Driven by Dual Optimization of Harris Hawks and Marine Predators
Cascade reservoir optimization faces significant challenges due to multi-dimensional, non-convex, and nonlinear characteristics with coupled constraints. As reservoir numbers increase, computational complexity escalates dramatically, limiting conventional optimization methods’ effectiveness. This pa...
Saved in:
| Published in: | Water (Basel) Vol. 17; no. 22; p. 3291 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
18.11.2025
|
| Subjects: | |
| ISSN: | 2073-4441, 2073-4441 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Cascade reservoir optimization faces significant challenges due to multi-dimensional, non-convex, and nonlinear characteristics with coupled constraints. As reservoir numbers increase, computational complexity escalates dramatically, limiting conventional optimization methods’ effectiveness. This paper proposes HHONMPA, a hybrid algorithm combining Harris Hawks Optimization (HHO) with Marine Predators Algorithm (MPA). The method uses SPM chaotic mapping for population initialization to enhance diversity and integrates both algorithms’ predatory behaviors. During exploration, it employs Brownian motion and improved Lévy flight strategies for global search, while exploitation uses enhanced HHO for local optimization. A novel Dual-Period Oscillation Attenuation Strategy dynamically adjusts parameters to balance exploration-exploitation. Performance validation using CEC2017 benchmark functions shows HHONMPA significantly outperforms the original HHO and MPA in solution accuracy and convergence speed, confirmed through statistical testing. Engineering validation applies the algorithm to the Lower Jinsha River—Three Gorges four-reservoir system, conducting experiments across various hydrological scenarios. Results demonstrate substantial improvements in search accuracy and convergence efficiency compared to existing methods. HHONMPA effectively addresses large-scale cascade reservoir optimization challenges, offering promising prospects for water resource management and hydropower scheduling applications. |
|---|---|
| AbstractList | Cascade reservoir optimization faces significant challenges due to multi-dimensional, non-convex, and nonlinear characteristics with coupled constraints. As reservoir numbers increase, computational complexity escalates dramatically, limiting conventional optimization methods’ effectiveness. This paper proposes HHONMPA, a hybrid algorithm combining Harris Hawks Optimization (HHO) with Marine Predators Algorithm (MPA). The method uses SPM chaotic mapping for population initialization to enhance diversity and integrates both algorithms’ predatory behaviors. During exploration, it employs Brownian motion and improved Lévy flight strategies for global search, while exploitation uses enhanced HHO for local optimization. A novel Dual-Period Oscillation Attenuation Strategy dynamically adjusts parameters to balance exploration-exploitation. Performance validation using CEC2017 benchmark functions shows HHONMPA significantly outperforms the original HHO and MPA in solution accuracy and convergence speed, confirmed through statistical testing. Engineering validation applies the algorithm to the Lower Jinsha River—Three Gorges four-reservoir system, conducting experiments across various hydrological scenarios. Results demonstrate substantial improvements in search accuracy and convergence efficiency compared to existing methods. HHONMPA effectively addresses large-scale cascade reservoir optimization challenges, offering promising prospects for water resource management and hydropower scheduling applications. |
| Audience | Academic |
| Author | Li, Yongxiang Chen, Xiaolin Liu, Shuai Qin, Hui Zhu, Xin Chen, Jiawen |
| Author_xml | – sequence: 1 givenname: Xiaolin surname: Chen fullname: Chen, Xiaolin – sequence: 2 givenname: Hui orcidid: 0000-0002-8805-0015 surname: Qin fullname: Qin, Hui – sequence: 3 givenname: Shuai surname: Liu fullname: Liu, Shuai – sequence: 4 givenname: Jiawen surname: Chen fullname: Chen, Jiawen – sequence: 5 givenname: Yongxiang surname: Li fullname: Li, Yongxiang – sequence: 6 givenname: Xin surname: Zhu fullname: Zhu, Xin |
| BookMark | eNpNUctKBDEQDKLg8-AfBDx5WM1jZpIcZX3sgqL4OA89Sc8anU3WZEbRr3dkRexLNU1VF921SzZDDEjIIWcnUhp2-sGVEFIYvkF2BFNyUhQF3_zXb5ODnF_YWIXRumQ7ZJiHHrvOLzD09ME-oxs6Hxb0Bvvn6GgbE51CtuCQ3mPG9B59yvQ8-XcMtPmk5wN09HbV-6X_gt7HQGNLZ5CSzyN8vGYKwdEbSD4gvUvooI8p75OtFrqMB7-4R54uLx6ns8n17dV8enY9sVxWfAKVEa6x2lagWhROKS4QRSMbVxgojdSqFU4y14hGOS64NI12VowUAdyWco8crfeuUnwbMPf1SxxSGC1rKVRZKsaMGVkna9YCOqx9aGOfwMLP0Utvxxe3fpyf6apUutJcj4LjtcCmmHPCtl4lv4T0WXNW_yRR_yUhvwHvZX0J |
| Cites_doi | 10.1016/j.knosys.2023.110494 10.1016/j.egyr.2024.04.006 10.1016/j.isci.2023.107896 10.1016/j.asoc.2018.06.011 10.1007/s11269-024-03893-x 10.1016/j.asoc.2019.105715 10.1016/j.wse.2020.06.005 10.1016/j.iot.2025.101536 10.1016/j.jenvman.2021.112250 10.1016/j.ijleo.2019.03.065 10.1016/j.matcom.2023.06.021 10.1016/j.eswa.2020.113377 10.1016/j.jhydrol.2019.123959 10.1016/j.asoc.2021.107574 10.1016/j.eswa.2023.122316 10.1016/j.eswa.2024.124955 10.1016/j.energy.2018.01.176 10.1016/j.ijleo.2022.170075 10.1016/j.cnsns.2025.108809 10.1016/j.apenergy.2018.07.078 10.1016/j.future.2019.02.028 10.1016/j.asoc.2023.110701 10.1016/j.energy.2024.130905 10.1016/j.jhydrol.2019.124431 10.1016/j.jhydrol.2021.126764 10.1016/j.engappai.2022.104952 10.1007/s11227-022-04959-6 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.3390/w17223291 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2073-4441 |
| ExternalDocumentID | A865786818 10_3390_w17223291 |
| GeographicLocations | Massachusetts China Jinsha River |
| GeographicLocations_xml | – name: China – name: Massachusetts – name: Jinsha River |
| GroupedDBID | 2XV 5VS 7XC 8CJ 8FE 8FH A8Z AADQD AAFWJ AAHBH AAYXX ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BANNL BCNDV BENPR CCPQU CITATION D1J E3Z ECGQY EDH ESTFP GX1 IAO ITC KQ8 MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c1361-a692dbc8c6a7fe2d7712ee2b3bd49a59387f2d30db2b7d12139b8dc2e2b2a1c53 |
| IEDL.DBID | BENPR |
| ISSN | 2073-4441 |
| IngestDate | Thu Nov 27 00:50:36 EST 2025 Tue Dec 02 03:53:48 EST 2025 Thu Nov 27 00:34:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1361-a692dbc8c6a7fe2d7712ee2b3bd49a59387f2d30db2b7d12139b8dc2e2b2a1c53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8805-0015 |
| OpenAccessLink | https://www.proquest.com/docview/3275570099?pq-origsite=%requestingapplication% |
| PQID | 3275570099 |
| PQPubID | 2032318 |
| ParticipantIDs | proquest_journals_3275570099 gale_infotracacademiconefile_A865786818 crossref_primary_10_3390_w17223291 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-18 |
| PublicationDateYYYYMMDD | 2025-11-18 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Water (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Niu (ref_7) 2018; 70 Dehkordi (ref_28) 2021; 109 Zhang (ref_2) 2020; 581 Lyu (ref_21) 2024; 257 Ji (ref_11) 2021; 602 Khan (ref_16) 2025; 146 Emami (ref_8) 2021; 286 Faramarzi (ref_15) 2020; 152 Fahmy (ref_18) 2023; 269 Bharatiraja (ref_13) 2024; 11 Yu (ref_26) 2023; 26 Yang (ref_14) 2023; 146 Xia (ref_4) 2019; 84 Shen (ref_9) 2024; 38 Boudjerda (ref_5) 2024; 44 Gezici (ref_24) 2022; 113 Wang (ref_25) 2022; 271 Qiao (ref_19) 2024; 241 Turgut (ref_10) 2019; 577 Liu (ref_20) 2023; 213 Gogula (ref_12) 2024; 5 Chen (ref_3) 2020; 13 Hasheminejad (ref_27) 2019; 184 Makhadmeh (ref_17) 2025; 31 Heidari (ref_23) 2019; 97 Li (ref_22) 2024; 294 Jiang (ref_6) 2018; 148 Zhou (ref_1) 2018; 228 Xue (ref_29) 2023; 79 |
| References_xml | – volume: 269 start-page: 110494 year: 2023 ident: ref_18 article-title: ECH3OA: An Enhanced Chimp-Harris Hawks Optimization Algorithm for copyright protection in Color Images using watermarking techniques publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2023.110494 – volume: 11 start-page: 4379 year: 2024 ident: ref_13 article-title: Chaotic Harris Hawks Optimization Algorithm for Electric Vehicles Charge Scheduling publication-title: Energy Rep. doi: 10.1016/j.egyr.2024.04.006 – volume: 26 start-page: 107896 year: 2023 ident: ref_26 article-title: An accelerated sine mapping whale optimizer for feature selection publication-title: iScience doi: 10.1016/j.isci.2023.107896 – volume: 70 start-page: 562 year: 2018 ident: ref_7 article-title: A parallel multi-objective particle swarm optimization for cascade hydropower reservoir operation in southwest China publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.06.011 – volume: 38 start-page: 4883 year: 2024 ident: ref_9 article-title: A Novel Hybrid Algorithm Based on Beluga Whale Optimization and Harris Hawks Optimization for Optimizing Multi-Reservoir Operation publication-title: Water Resour. Manag. doi: 10.1007/s11269-024-03893-x – volume: 84 start-page: 105715 year: 2019 ident: ref_4 article-title: Simplex quantum-behaved particle swarm optimization algorithm with application to ecological operation of cascade hydropower reservoirs publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105715 – volume: 13 start-page: 136 year: 2020 ident: ref_3 article-title: Multi-objective reservoir operation using particle swarm optimization with adaptive random inertia weights publication-title: Water Sci. Eng. doi: 10.1016/j.wse.2020.06.005 – volume: 31 start-page: 101536 year: 2025 ident: ref_17 article-title: A crossover-integrated Marine Predator Algorithm for feature selection in intrusion detection systems within IoT environments publication-title: Internet Things doi: 10.1016/j.iot.2025.101536 – volume: 286 start-page: 112250 year: 2021 ident: ref_8 article-title: A hybrid constrained coral reefs optimization algorithm with machine learning for optimizing multi-reservoir systems operation publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.112250 – volume: 184 start-page: 205 year: 2019 ident: ref_27 article-title: A novel bit level multiphase algorithm for image encryption based on PWLCM chaotic map publication-title: Optik doi: 10.1016/j.ijleo.2019.03.065 – volume: 5 start-page: 436 year: 2024 ident: ref_12 article-title: Multi-objective Harris Hawks optimization algorithm for selecting best location and size of distributed generation in radial distribution system publication-title: Int. J. Cogn. Comput. Eng. – volume: 213 start-page: 466 year: 2023 ident: ref_20 article-title: A multi-leader Harris hawks optimizer with adaptive mutation and its application for modeling of silicon content in liquid iron of blast furnace publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2023.06.021 – volume: 152 start-page: 113377 year: 2020 ident: ref_15 article-title: Marine Predators Algorithm: A nature-inspired metaheuristic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 577 start-page: 123959 year: 2019 ident: ref_10 article-title: A novel Master–Slave optimization algorithm for generating an optimal release policy in case of reservoir operation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.123959 – volume: 109 start-page: 107574 year: 2021 ident: ref_28 article-title: Nonlinear-based Chaotic Harris Hawks Optimizer: Algorithm and Internet of Vehicles application publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107574 – volume: 241 start-page: 122316 year: 2024 ident: ref_19 article-title: A multi-level thresholding image segmentation method using hybrid Arithmetic Optimization and Harris Hawks Optimizer algorithms publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122316 – volume: 257 start-page: 124955 year: 2024 ident: ref_21 article-title: MMPA: A modified marine predator algorithm for 3D UAV path planning in complex environments with multiple threats publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.124955 – volume: 148 start-page: 309 year: 2018 ident: ref_6 article-title: Multi-stage progressive optimality algorithm and its application in energy storage operation chart optimization of cascade reservoirs publication-title: Energy doi: 10.1016/j.energy.2018.01.176 – volume: 271 start-page: 170075 year: 2022 ident: ref_25 article-title: Image encryption based on Logistic-Sine self-embedding chaotic sequence publication-title: Optik doi: 10.1016/j.ijleo.2022.170075 – volume: 146 start-page: 108809 year: 2025 ident: ref_16 article-title: Nonlinear marine predator algorithm for robust identification of fractional hammerstein nonlinear model under impulsive noise with application to heat exchanger system publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2025.108809 – volume: 228 start-page: 1726 year: 2018 ident: ref_1 article-title: Boosting hydropower output of mega cascade reservoirs using an evolutionary algorithm with successive approximation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.07.078 – volume: 97 start-page: 849 year: 2019 ident: ref_23 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 146 start-page: 110701 year: 2023 ident: ref_14 article-title: A fusion algorithm based on whale and grey wolf optimization algorithm for solving real-world optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110701 – volume: 294 start-page: 130905 year: 2024 ident: ref_22 article-title: Grid-connected multi-microgrid system operational scheduling optimization: A hierarchical improved marine predators algorithm publication-title: Energy doi: 10.1016/j.energy.2024.130905 – volume: 581 start-page: 124431 year: 2020 ident: ref_2 article-title: Improved Multi-objective Moth-flame Optimization Algorithm based on R-domination for cascade reservoirs operation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124431 – volume: 44 start-page: 101035 year: 2024 ident: ref_5 article-title: Optimization of reservoir operation by sine cosine algorithm: A case of study in Algeria publication-title: Sustain. Comput. Inform. Syst. – volume: 602 start-page: 126764 year: 2021 ident: ref_11 article-title: Considering water propagation impact in short-term optimal operation of cascade reservoirs using Nested Progressive Optimality Algorithm publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126764 – volume: 113 start-page: 104952 year: 2022 ident: ref_24 article-title: An improved Harris Hawks Optimization algorithm for continuous and discrete optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.104952 – volume: 79 start-page: 7305 year: 2023 ident: ref_29 article-title: Dung beetle optimizer: A new meta-heuristic algorithm for global optimization publication-title: J. Supercomput. doi: 10.1007/s11227-022-04959-6 |
| SSID | ssj0000498850 |
| Score | 2.3493068 |
| Snippet | Cascade reservoir optimization faces significant challenges due to multi-dimensional, non-convex, and nonlinear characteristics with coupled constraints. As... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 3291 |
| SubjectTerms | Accuracy Algorithms Analysis Behavior Efficiency Exploitation Hydroelectric power Linear programming Management Mathematical programming Methods Optimization algorithms Power Random variables Scheduling Water |
| Title | Intelligent Scheduling Method for Cascade Reservoirs Driven by Dual Optimization of Harris Hawks and Marine Predators |
| URI | https://www.proquest.com/docview/3275570099 |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA5uBz24i-NGEMFT0SbTJD2JK3qYsbiAnkq2iogz2s6C_973ZjKjgnjxlENLUviS731JX75HyB6TRZFwYSIlpI8gQvBIcWUilvi618bEyplBsQnZbKqHhzQLB25VSKscceKAqF3b4hn5AWcS3aJA0By9vUdYNQr_roYSGpNkGp3KYJ5Pn5w3s5vxKQvoX6WSw6GlEIf9_UEfIjaoiDT-EYh-p-NBjLlY-O_XLZL5oC7p8XA6LJEJ31omc988B1dI92pswtmhtwCZw1z0J9oYlJKmoGHpqa4wa55iVl7Zaz-XFT0rkRWp-aBnXRjgGojmNdzgpO2CXuoSyAKa_ktFdcvRhsZbhTQrvcNdfbVK7i_O704vo1B7IbIxF3GkRcqcscoKLQvPnJQx854Zblw91UnKlSyY44fOMCMd-sKlRjnL4BWmY5vwNTLVarf8OqHWJ9CFddwwC_JQGM-14HE9kYZrrus1sjsCIn8bWmzksDVBtPIxWjWyjxDluOw6pbY63B6AIdDAKj9WArhHgPyoka0RRHlYj1X-hc_G3483ySzDCr-Y6Ke2yFSn7PptMmN7neeq3AnTC9rsqpE9fgL6G949 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Na9tAFHwEJ9D2kH5TJ2m7hJaeRKxdaXd1KCXEDTaJHUNTSE_qfqmEEDuR7Jj8qf7GvmdLbguhtxx60kFCi7TD7Gj13gzAO66KIhXSRlqqEOEKISIttI14GpJgrI21t4uwCTUc6rOzbLQGP5teGCqrbDhxQdR-4miPfE9wRW5RKGg-XV1HlBpFf1ebCI0lLI7C7Rw_2aqP_S7O73vODz-fHvSiOlUgcrGQcWRkxr112kmjisC9UjEPgVthfZKZNBNaFdyLjrfcKk-OZ5nV3nG8hJvYUUoEUv56QmBvwfqoPxh9W-3qoN7WOu0sLYyEyDp7c1QIqFqy-K-F7276X6xph4__t7fxBDZr9cz2l3B_Cmth_Awe_eGp-Bxm_ZXJ6JR9QUh6qrX_wQaLqGyGGp0dmIq6AhhVHZY3k_OyYt2SWJ_ZW9ad4QAnSKSXdYcqmxSsZ0okQzzMLypmxp4NDHVNslEZPO1aVC_g670890tojSfj8AqYCynewnlhuUP5K20QRoo4SZUVRpikDbvNxOdXSwuRHD-9CB35Ch1t-ECQyIlWpqVxpu6OwCHIoCvf1xK5VaK8asNOA4m85psq_42HrX-ffgsPeqeD4_y4Pzzahoec0oypqFHvQGtazsJr2HA30_OqfFNDm8H3-8bPL2X-OrA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VKUL0wDdqoMAKgThZiXft3fWhQlVD1KgkWAKkcjL7ZVRVTYqdNOpf669jJrEDSIhbD5x8sOWV7ec3b3dn5gG85qosUyFtpKUKEUYIEWmhbcTTkARjbay9XZlNqMlEn5xk-RZct7UwlFbZcuKKqP3M0Rp5T3BF3aJQ0PTKJi0iHwzfXfyIyEGKdlpbO401RI7D1RKnb_X-aIDf-g3nw_efD4-ixmEgcrGQcWRkxr112kmjysC9UjEPgVthfZKZNBNaldyLvrfcKk_dzzKrveN4CTexI8cIpP9tlOQJ78B2PhrnXzcrPKi9tU7763ZGQmT93hLVAiqYLP4jCP49FKzi2_De__xm7sPdRlWzg_Vv8AC2wvQh7PzWa_ERLEab5qNz9gmh6ikH_zsbryy0GWp3dmhqqhZglI1YXc5Oq5oNKooGzF6xwQIH-IgEe95UrrJZyY5MhSSJh-VZzczUs7GhakqWV8HTakb9GL7cyHM_gc50Ng27wFxI8RbOC8sdymJpgzBSxEmqrDDCJF141YKguFi3FilwSkZIKTZI6cJbgkdBdDOvjDNN1QQOQY27igMtkXMlyq4u7LXwKBoeqotf2Hj679Mv4TaCpvgwmhw_gzucTI4p11HvQWdeLcJzuOUu56d19aJBOYNvNw2fn5xCQ3A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Scheduling+Method+for+Cascade+Reservoirs+Driven+by+Dual+Optimization+of+Harris+Hawks+and+Marine+Predators&rft.jtitle=Water+%28Basel%29&rft.au=Chen%2C+Xiaolin&rft.au=Qin%2C+Hui&rft.au=Liu%2C+Shuai&rft.au=Chen%2C+Jiawen&rft.date=2025-11-18&rft.pub=MDPI+AG&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=17&rft.issue=22&rft_id=info:doi/10.3390%2Fw17223291&rft.externalDocID=A865786818 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon |