Collaborative Ontology Matching With Dual Population Genetic Programming and Active Meta-Learning
Ontology provides a structured language to encapsulate domain-specific knowledge and harmonize diverse data. Ontology matching identifies similar entities in distinct ontologies, facilitating knowledge integration and information exchange. Similarity features are crucial for ontology matching by mea...
Uloženo v:
| Vydáno v: | IEEE transactions on evolutionary computation s. 1 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
2025
|
| Témata: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Ontology provides a structured language to encapsulate domain-specific knowledge and harmonize diverse data. Ontology matching identifies similar entities in distinct ontologies, facilitating knowledge integration and information exchange. Similarity features are crucial for ontology matching by measuring entity resemblance, but noisy and redundant features can obscure relevant ones, reducing matching quality. To improve the accuracy of matching results, we propose a dual population genetic programming with an active meta-learning to build a high-quality similarity feature, which owns three novel components. First, a dual population genetic programming is developed to construct high-level similarity feature with a two-layer individual representation, a dual population based co-evolutionary mechanism, and a novel fitness function based on partial standard alignment. Second, a new active learning model is presented to update the partial standard alignment through an efficient interactive procedure, guiding the algorithm towards building more reliable similarity features. Finally, a weighted random forest meta-learning model is designed to train the expert vote aggregation model with their historical behaviors, and fine-tunes the model's performance with a compact genetic algorithm. Experimental results on the Ontology Alignment Evaluation Initiative's interactive matching tasks demonstrate that our method consistently achieves higher accuracy and better efficiency compared to advanced matching techniques across various expert error rates. |
|---|---|
| AbstractList | Ontology provides a structured language to encapsulate domain-specific knowledge and harmonize diverse data. Ontology matching identifies similar entities in distinct ontologies, facilitating knowledge integration and information exchange. Similarity features are crucial for ontology matching by measuring entity resemblance, but noisy and redundant features can obscure relevant ones, reducing matching quality. To improve the accuracy of matching results, we propose a dual population genetic programming with an active meta-learning to build a high-quality similarity feature, which owns three novel components. First, a dual population genetic programming is developed to construct high-level similarity feature with a two-layer individual representation, a dual population based co-evolutionary mechanism, and a novel fitness function based on partial standard alignment. Second, a new active learning model is presented to update the partial standard alignment through an efficient interactive procedure, guiding the algorithm towards building more reliable similarity features. Finally, a weighted random forest meta-learning model is designed to train the expert vote aggregation model with their historical behaviors, and fine-tunes the model's performance with a compact genetic algorithm. Experimental results on the Ontology Alignment Evaluation Initiative's interactive matching tasks demonstrate that our method consistently achieves higher accuracy and better efficiency compared to advanced matching techniques across various expert error rates. |
| Author | Jiang, Zhaohang Lin, Jerry Chun-Wei Xue, Xingsi |
| Author_xml | – sequence: 1 givenname: Xingsi orcidid: 0000-0002-3008-8782 surname: Xue fullname: Xue, Xingsi email: jack8375@gmail.com organization: Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou, Fujian, China – sequence: 2 givenname: Jerry Chun-Wei orcidid: 0000-0003-0920-0060 surname: Lin fullname: Lin, Jerry Chun-Wei email: jerry.chun-wei.lin@polsl.pl organization: Department of Distributed Systems and IT Devices, Silesian University of Technology, Akademicka, Gliwice, Poland – sequence: 3 givenname: Zhaohang surname: Jiang fullname: Jiang, Zhaohang email: zhjiang 69@163.com organization: School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China |
| BookMark | eNpFkMtuwjAQRa2KSgXaD6jUhX8g1JPYTrJEKaWVQLCgj13kOGNIFWzkBCT-vklB6mpGuufexRmRgXUWCXkENgFg6fNm9plNQhaKSSRkGkXyhgwh5RAwFspB97MkDeI4-b4jo6b5YQy4gHRIVObqWhXOq7Y6IV3Z1tVue6ZL1epdZbf0q2p39OWoarp2h2PdYc7SOVpsK03X3m292u97UNmSTvXfyhJbFSxQedsF9-TWqLrBh-sdk4_X2SZ7Cxar-Xs2XQQaItEGBuJS6bgwCcaS8xh5WQoTgtQCtYwLLhMwRhrBMRTADIZdILEAhUwXHKIxgcuu9q5pPJr84Ku98uccWN47yntHee8ovzrqOk-XToWI_zx00gQX0S87YWcI |
| CODEN | ITEVF5 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TEVC.2025.3569336 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TEVC_2025_3569336 11002545 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62172095 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS HZ~ IEGSK IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IFJZH VH1 |
| ID | FETCH-LOGICAL-c135t-f17dac7bf8e76447e4dd5f216c5ec67b4681ff6f54e2510fe2c5e6eb1ae0cb413 |
| IEDL.DBID | RIE |
| ISSN | 1089-778X |
| IngestDate | Sat Nov 29 07:52:23 EST 2025 Wed Aug 27 01:53:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c135t-f17dac7bf8e76447e4dd5f216c5ec67b4681ff6f54e2510fe2c5e6eb1ae0cb413 |
| ORCID | 0000-0002-3008-8782 0000-0003-0920-0060 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_TEVC_2025_3569336 ieee_primary_11002545 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0014519 |
| Score | 2.4722543 |
| Snippet | Ontology provides a structured language to encapsulate domain-specific knowledge and harmonize diverse data. Ontology matching identifies similar entities in... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Active Meta-Learning Adaptation models Collaboration Collaborative Ontology Matching Evolutionary computation Genetic algorithms Genetic programming Metalearning Ontologies Similarity Feature Construction Training Weighted Random Forest |
| Title | Collaborative Ontology Matching With Dual Population Genetic Programming and Active Meta-Learning |
| URI | https://ieeexplore.ieee.org/document/11002545 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-EeNCDKGLEr_TgyWSwjq3tjgQhHgQ5IHJbuvZVOTgMDhL_e9tuCB48eFu2dlve2973-z2EbjWnoOKAeTQmyguZAo8Ln3uglYq5ZDpw6YLpIxuN-GwWj8tmddcLAwCu-Axa9tDl8tVCrmyorG3hzYxDE1VQhTFaNGv9pAwsTkpRTR8bk5HPyhQm8eP2pD_tGVcwiFqdiBoPnv5SQjtTVZxSGdT--TrH6Ki0HnG3YPcJ2oOsjmqbyQy4_FHr6HAHZvAUid6W2WvAT5mbWfuFh0YM2wAUfpnnb_h-Ze48_pnnhS0gtXkMHhcVXO92ocgU7joJiYeQC69EZ31toOdBf9J78MrRCp4knSj3NGFKSJZqDsxYRAxCpSIdECojkJSlIeVEa6qjEIwB5GsIzAVq5LoAX6ZG8Z2harbI4BzhwFdmQ6pC0eEWzo9TIkKhwWg-YEB4E91taJ18FAgaifM8_DixjEksY5KSMU3UsHTeLixJfPHH-Ut0YLcXMZErVM2XK7hG-3Kdzz-XN-4D-QZLnrqk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BQQIGyqOI8vTAhBRI0sR2xqqAimhLhwLdIjc-AwMBlbQS_x7bcVsYGNiixHGiu-Te9x3AmeIUZRIyjyaB9CIm0ePC5x4qKROeMRXadMFjh_V6fDhM-q5Z3fbCIKItPsMLc2hz-fI9m5hQ2aWBN9MOTbwMK2Z0lmvXmicNDFJKWU-faKORD10SM_CTy8H1Y0s7g2F80Yip9uHpLzX0Y66KVSs31X--0BZsOvuRNEuGb8MS5jtQnc1mIO5X3YGNH0CDuyBaC3ZPkdzndmrtF-lqQWxCUOTptXghVxO9c38-0YsYSGr9GNIva7jezEKRS9K0MpJ0sRCew2d9rsHDzfWg1fbccAUvCxpx4amASZGxkeLItE3EMJIyVmFAsxgzykYR5YFSVMURahPIVxjqC1RLdoF-NtLE34NK_p7jPpDQl_qGkYxEgxtAP04DEQmFWvchw4DX4XxG6_SjxNBIre_hJ6lhTGoYkzrG1KFm6LxY6Eh88Mf5U1hrD7qdtHPbuzuEdbNVGSE5gkoxnuAxrGbT4vVzfGI_lm8xnL3t |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Ontology+Matching+With+Dual+Population+Genetic+Programming+and+Active+Meta-Learning&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Xue%2C+Xingsi&rft.au=Lin%2C+Jerry+Chun-Wei&rft.au=Jiang%2C+Zhaohang&rft.date=2025&rft.issn=1089-778X&rft.eissn=1941-0026&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTEVC.2025.3569336&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2025_3569336 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |