Collaborative Ontology Matching With Dual Population Genetic Programming and Active Meta-Learning

Ontology provides a structured language to encapsulate domain-specific knowledge and harmonize diverse data. Ontology matching identifies similar entities in distinct ontologies, facilitating knowledge integration and information exchange. Similarity features are crucial for ontology matching by mea...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on evolutionary computation s. 1
Hlavní autoři: Xue, Xingsi, Lin, Jerry Chun-Wei, Jiang, Zhaohang
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 2025
Témata:
ISSN:1089-778X, 1941-0026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Ontology provides a structured language to encapsulate domain-specific knowledge and harmonize diverse data. Ontology matching identifies similar entities in distinct ontologies, facilitating knowledge integration and information exchange. Similarity features are crucial for ontology matching by measuring entity resemblance, but noisy and redundant features can obscure relevant ones, reducing matching quality. To improve the accuracy of matching results, we propose a dual population genetic programming with an active meta-learning to build a high-quality similarity feature, which owns three novel components. First, a dual population genetic programming is developed to construct high-level similarity feature with a two-layer individual representation, a dual population based co-evolutionary mechanism, and a novel fitness function based on partial standard alignment. Second, a new active learning model is presented to update the partial standard alignment through an efficient interactive procedure, guiding the algorithm towards building more reliable similarity features. Finally, a weighted random forest meta-learning model is designed to train the expert vote aggregation model with their historical behaviors, and fine-tunes the model's performance with a compact genetic algorithm. Experimental results on the Ontology Alignment Evaluation Initiative's interactive matching tasks demonstrate that our method consistently achieves higher accuracy and better efficiency compared to advanced matching techniques across various expert error rates.
AbstractList Ontology provides a structured language to encapsulate domain-specific knowledge and harmonize diverse data. Ontology matching identifies similar entities in distinct ontologies, facilitating knowledge integration and information exchange. Similarity features are crucial for ontology matching by measuring entity resemblance, but noisy and redundant features can obscure relevant ones, reducing matching quality. To improve the accuracy of matching results, we propose a dual population genetic programming with an active meta-learning to build a high-quality similarity feature, which owns three novel components. First, a dual population genetic programming is developed to construct high-level similarity feature with a two-layer individual representation, a dual population based co-evolutionary mechanism, and a novel fitness function based on partial standard alignment. Second, a new active learning model is presented to update the partial standard alignment through an efficient interactive procedure, guiding the algorithm towards building more reliable similarity features. Finally, a weighted random forest meta-learning model is designed to train the expert vote aggregation model with their historical behaviors, and fine-tunes the model's performance with a compact genetic algorithm. Experimental results on the Ontology Alignment Evaluation Initiative's interactive matching tasks demonstrate that our method consistently achieves higher accuracy and better efficiency compared to advanced matching techniques across various expert error rates.
Author Jiang, Zhaohang
Lin, Jerry Chun-Wei
Xue, Xingsi
Author_xml – sequence: 1
  givenname: Xingsi
  orcidid: 0000-0002-3008-8782
  surname: Xue
  fullname: Xue, Xingsi
  email: jack8375@gmail.com
  organization: Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou, Fujian, China
– sequence: 2
  givenname: Jerry Chun-Wei
  orcidid: 0000-0003-0920-0060
  surname: Lin
  fullname: Lin, Jerry Chun-Wei
  email: jerry.chun-wei.lin@polsl.pl
  organization: Department of Distributed Systems and IT Devices, Silesian University of Technology, Akademicka, Gliwice, Poland
– sequence: 3
  givenname: Zhaohang
  surname: Jiang
  fullname: Jiang, Zhaohang
  email: zhjiang 69@163.com
  organization: School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
BookMark eNpFkMtuwjAQRa2KSgXaD6jUhX8g1JPYTrJEKaWVQLCgj13kOGNIFWzkBCT-vklB6mpGuufexRmRgXUWCXkENgFg6fNm9plNQhaKSSRkGkXyhgwh5RAwFspB97MkDeI4-b4jo6b5YQy4gHRIVObqWhXOq7Y6IV3Z1tVue6ZL1epdZbf0q2p39OWoarp2h2PdYc7SOVpsK03X3m292u97UNmSTvXfyhJbFSxQedsF9-TWqLrBh-sdk4_X2SZ7Cxar-Xs2XQQaItEGBuJS6bgwCcaS8xh5WQoTgtQCtYwLLhMwRhrBMRTADIZdILEAhUwXHKIxgcuu9q5pPJr84Ku98uccWN47yntHee8ovzrqOk-XToWI_zx00gQX0S87YWcI
CODEN ITEVF5
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2025.3569336
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 1
ExternalDocumentID 10_1109_TEVC_2025_3569336
11002545
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62172095
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
HZ~
IEGSK
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IFJZH
VH1
ID FETCH-LOGICAL-c135t-f17dac7bf8e76447e4dd5f216c5ec67b4681ff6f54e2510fe2c5e6eb1ae0cb413
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Sat Nov 29 07:52:23 EST 2025
Wed Aug 27 01:53:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c135t-f17dac7bf8e76447e4dd5f216c5ec67b4681ff6f54e2510fe2c5e6eb1ae0cb413
ORCID 0000-0002-3008-8782
0000-0003-0920-0060
PageCount 1
ParticipantIDs crossref_primary_10_1109_TEVC_2025_3569336
ieee_primary_11002545
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014519
Score 2.4722543
Snippet Ontology provides a structured language to encapsulate domain-specific knowledge and harmonize diverse data. Ontology matching identifies similar entities in...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Active Meta-Learning
Adaptation models
Collaboration
Collaborative Ontology Matching
Evolutionary computation
Genetic algorithms
Genetic programming
Metalearning
Ontologies
Similarity Feature Construction
Training
Weighted Random Forest
Title Collaborative Ontology Matching With Dual Population Genetic Programming and Active Meta-Learning
URI https://ieeexplore.ieee.org/document/11002545
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-EeNCDKGLEr_TgyWSwjq3tjgQhHgQ5IHJbuvZVOTgMDhL_e9tuCB48eFu2dlve2973-z2EbjWnoOKAeTQmyguZAo8Ln3uglYq5ZDpw6YLpIxuN-GwWj8tmddcLAwCu-Axa9tDl8tVCrmyorG3hzYxDE1VQhTFaNGv9pAwsTkpRTR8bk5HPyhQm8eP2pD_tGVcwiFqdiBoPnv5SQjtTVZxSGdT--TrH6Ki0HnG3YPcJ2oOsjmqbyQy4_FHr6HAHZvAUid6W2WvAT5mbWfuFh0YM2wAUfpnnb_h-Ze48_pnnhS0gtXkMHhcVXO92ocgU7joJiYeQC69EZ31toOdBf9J78MrRCp4knSj3NGFKSJZqDsxYRAxCpSIdECojkJSlIeVEa6qjEIwB5GsIzAVq5LoAX6ZG8Z2harbI4BzhwFdmQ6pC0eEWzo9TIkKhwWg-YEB4E91taJ18FAgaifM8_DixjEksY5KSMU3UsHTeLixJfPHH-Ut0YLcXMZErVM2XK7hG-3Kdzz-XN-4D-QZLnrqk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BQQIGyqOI8vTAhBRI0sR2xqqAimhLhwLdIjc-AwMBlbQS_x7bcVsYGNiixHGiu-Te9x3AmeIUZRIyjyaB9CIm0ePC5x4qKROeMRXadMFjh_V6fDhM-q5Z3fbCIKItPsMLc2hz-fI9m5hQ2aWBN9MOTbwMK2Z0lmvXmicNDFJKWU-faKORD10SM_CTy8H1Y0s7g2F80Yip9uHpLzX0Y66KVSs31X--0BZsOvuRNEuGb8MS5jtQnc1mIO5X3YGNH0CDuyBaC3ZPkdzndmrtF-lqQWxCUOTptXghVxO9c38-0YsYSGr9GNIva7jezEKRS9K0MpJ0sRCew2d9rsHDzfWg1fbccAUvCxpx4amASZGxkeLItE3EMJIyVmFAsxgzykYR5YFSVMURahPIVxjqC1RLdoF-NtLE34NK_p7jPpDQl_qGkYxEgxtAP04DEQmFWvchw4DX4XxG6_SjxNBIre_hJ6lhTGoYkzrG1KFm6LxY6Eh88Mf5U1hrD7qdtHPbuzuEdbNVGSE5gkoxnuAxrGbT4vVzfGI_lm8xnL3t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Ontology+Matching+With+Dual+Population+Genetic+Programming+and+Active+Meta-Learning&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Xue%2C+Xingsi&rft.au=Lin%2C+Jerry+Chun-Wei&rft.au=Jiang%2C+Zhaohang&rft.date=2025&rft.issn=1089-778X&rft.eissn=1941-0026&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTEVC.2025.3569336&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2025_3569336
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon