Evolving Generalizable Parallel Algorithm Portfolios for Binary Optimization Problems via Domain-Agnostic Instance Generation
Generalization is the core objective when training optimizers from data. However, limited training instances often constrain the generalization capability of the trained optimizers. Co-evolutionary approaches address this challenge by simultaneously evolving a parallel algorithm portfolio (PAP) and...
Uloženo v:
| Vydáno v: | IEEE transactions on evolutionary computation s. 1 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
2025
|
| Témata: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Generalization is the core objective when training optimizers from data. However, limited training instances often constrain the generalization capability of the trained optimizers. Co-evolutionary approaches address this challenge by simultaneously evolving a parallel algorithm portfolio (PAP) and an instance population to eventually obtain PAPs with good generalization. Yet, when applied to a specific problem class, these approaches have a major limitation. They require practitioners to provide instance generators specially tailored to the problem class, which is often non-trivial to design. This work proposes a general-purpose, off-the-shelf PAP construction approach, named domain-agnostic co-evolution of parameterized search (DACE), for binary optimization problems where decision variables take values of 0 or 1. The key novelty of DACE lies in its neural network-based domain-agnostic instance representation and generation mechanism that eliminates the need for domain-specific instance generators. The strong generality of DACE is validated across three real-world binary optimization problems: the complementary influence maximization problem (CIMP), the compiler arguments optimization problem (CAOP), and the contamination control problem (CCP). Given only a small set of training instances from these problem classes, DACE, without requiring domain knowledge, constructs PAPs with even better generalization performance than existing approaches on all three classes, despite their use of domain-specific instance generators. |
|---|---|
| AbstractList | Generalization is the core objective when training optimizers from data. However, limited training instances often constrain the generalization capability of the trained optimizers. Co-evolutionary approaches address this challenge by simultaneously evolving a parallel algorithm portfolio (PAP) and an instance population to eventually obtain PAPs with good generalization. Yet, when applied to a specific problem class, these approaches have a major limitation. They require practitioners to provide instance generators specially tailored to the problem class, which is often non-trivial to design. This work proposes a general-purpose, off-the-shelf PAP construction approach, named domain-agnostic co-evolution of parameterized search (DACE), for binary optimization problems where decision variables take values of 0 or 1. The key novelty of DACE lies in its neural network-based domain-agnostic instance representation and generation mechanism that eliminates the need for domain-specific instance generators. The strong generality of DACE is validated across three real-world binary optimization problems: the complementary influence maximization problem (CIMP), the compiler arguments optimization problem (CAOP), and the contamination control problem (CCP). Given only a small set of training instances from these problem classes, DACE, without requiring domain knowledge, constructs PAPs with even better generalization performance than existing approaches on all three classes, despite their use of domain-specific instance generators. |
| Author | Tang, Ke Liu, Shengcai Yang, Peng Wang, Zhiyuan |
| Author_xml | – sequence: 1 givenname: Zhiyuan orcidid: 0000-0002-9482-7580 surname: Wang fullname: Wang, Zhiyuan email: wangzy2020@mail.sustech.edu.cn organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China – sequence: 2 givenname: Shengcai orcidid: 0000-0002-4223-2438 surname: Liu fullname: Liu, Shengcai email: liusc3@sustech.edu.cn organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China – sequence: 3 givenname: Peng orcidid: 0000-0001-5333-6155 surname: Yang fullname: Yang, Peng email: yangp@sustech.edu.cn organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China – sequence: 4 givenname: Ke orcidid: 0000-0002-6236-2002 surname: Tang fullname: Tang, Ke email: tangk3@sustech.edu.cn organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China |
| BookMark | eNpFkMFKAzEQhoNUsK0-gOAhL7A12WyyybHWtRYK7aGKtyXdZGskm5RkKSj47mZpwdPMYb6Z-b8JGDnvNAD3GM0wRuJxV70vZjnK6YwwQjGnV2CMRYEzhHI2Sj3iIitL_nEDJjF-IYQLisUY_FYnb0_GHeBSOx2kNT9ybzXcytRbbeHcHnww_WcHtz70rbfGR9j6AJ-Mk-Ebbo696RLUG-_gNvgEdxGejITPvpPGZfOD87E3DVy52EvX6MulAbgF1620Ud9d6hS8vVS7xWu23ixXi_k6azChfab3DAkpuGKsxSmjorkiKTVpy4JrygnTBW9EI4RqlOKoKKlsVSFLzFUKXpIpwOe9TfAxBt3Wx2C69H6NUT34qwd_9eCvvvhLzMOZMVrr_3mcM0wEI38UfHDs |
| CODEN | ITEVF5 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TEVC.2025.3635185 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TEVC_2025_3635185 11261396 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Guangdong Major Project of Basic and Applied Basic Research grantid: 2023B0303000010 – fundername: National Key Research and Development Program of China grantid: 2022YFA1004102 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 62272210 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IF 6IK 97E AAJGR AASAJ AAWTH ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS HZ~ IFIPE IPLJI JAVBF LAI O9- OCL P2P PQQKQ RIA RIE RNS TN5 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IFJZH M43 VH1 |
| ID | FETCH-LOGICAL-c135t-eb609a98d66f1025d52d31093f748e5836e48c9c99dcdd80475afd4a718d10873 |
| IEDL.DBID | RIE |
| ISSN | 1089-778X |
| IngestDate | Thu Nov 27 01:00:02 EST 2025 Wed Nov 26 07:22:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c135t-eb609a98d66f1025d52d31093f748e5836e48c9c99dcdd80475afd4a718d10873 |
| ORCID | 0000-0001-5333-6155 0000-0002-9482-7580 0000-0002-6236-2002 0000-0002-4223-2438 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_TEVC_2025_3635185 ieee_primary_11261396 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0014519 |
| Score | 2.4557774 |
| Snippet | Generalization is the core objective when training optimizers from data. However, limited training instances often constrain the generalization capability of... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithm configuration automatic algorithm design binary optimization problem Closed box co-evolutionary algorithm Evolutionary computation Feature extraction Generators Optimization parallel algorithm portfolios Parallel algorithms Portfolios Search problems Training Tuning |
| Title | Evolving Generalizable Parallel Algorithm Portfolios for Binary Optimization Problems via Domain-Agnostic Instance Generation |
| URI | https://ieeexplore.ieee.org/document/11261396 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZoxQADZxHlkgcmpEBSO4k9FmgFEiodAHWLHPsFIrUN6sHGf8fPMdCFgS2KYsfyl_h97ybkXOQguNU7AmlyFnCeqkDEwmopOkJ6ohi4YtUvD-lgIEYjOfTJ6i4XBgBc8Blc4qXz5ZtKL9FUdoXpLpaxJA3SSNO0Ttb6cRlgnZQ6ml5ayihG3oUZhfLqqfdyY1XBTnzJrHyNsG_yihBa6arihEp_-5_L2SFbnj3Sbg33LlmD6R7Z_u7MQP2Pukc2V8oM7pPPnj2D0HBAfZFpjOQaAx2qGXZSsfONX6tZuXibUAwsLapxWc2pZbP02mXr0kd7rkx8wiYd1i1o5vSjVPS2mqhyGnQxXM-uid47tqnBvwkHtMhzv_d0cxf4tguBjli8CCBPQqmkMElSWPoRm7hjsH4oK1IuIBYsAS601FIabYwIeRqrwnBlpZyxu5-yA9KcVlM4JLQjcwaaWYqZc17kTPEEwsRODLyIIyPa5OIbh-y9rq6ROa0klBmCliFomQetTVqIwe-DfvuP_rh_TDZweG0vOSHNxWwJp2RdfyzK-ezMfTxfnOzD3g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH9iMGnbATbGNAbbfOA0KZDUdmIf-SgCrZQeOtRb5NgvW6S2mdrCbf_7_BwDveywWxTFjuWX-P3e1-8BHKkKlfB2R6JdxRMhCpMoqbyVYjOCJ4ZjIKu-GxTDoZpM9CgWq4daGEQMyWd4TJchlu9ae0-ushMqd_GIJX8BW1KIXtaVaz0FDYgppcun1x40qkkMYmapPhn37869MdiTx9xr2Iw6J6-pobW-KkGtXO7854LewnbEj-y0E_g72MD5Luw89mZg8VfdhTdrRIPv4U_fn0LkOmCRZppyuabIRmZBvVT8fNOf7aJZ_ZoxSi2t22nTLpnHs-ws1OuyW3-yzGLJJht1TWiW7KEx7KKdmWaenFLCnl8Tuw5402J8Ew3Ygx-X_fH5VRIbLyQ243KVYJWn2mjl8rz2AEQ62XPEIMrrQiiUiucolNVWa2edU6kopKmdMF7POb_7Bf8Am_N2jh-B9XTF0XIPMish6oobkWOa-4lR1DJzah--Pcqh_N3xa5TBLkl1SUIrSWhlFNo-7JEMnh-M2__pH_e_wqur8c2gHFwPvx_Aa5qq854cwuZqcY-f4aV9WDXLxZfwIf0F9V3HJQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolving+Generalizable+Parallel+Algorithm+Portfolios+for+Binary+Optimization+Problems+via+Domain-Agnostic+Instance+Generation&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Wang%2C+Zhiyuan&rft.au=Liu%2C+Shengcai&rft.au=Yang%2C+Peng&rft.au=Tang%2C+Ke&rft.date=2025&rft.issn=1089-778X&rft.eissn=1941-0026&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTEVC.2025.3635185&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2025_3635185 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |