Evolving Generalizable Parallel Algorithm Portfolios for Binary Optimization Problems via Domain-Agnostic Instance Generation

Generalization is the core objective when training optimizers from data. However, limited training instances often constrain the generalization capability of the trained optimizers. Co-evolutionary approaches address this challenge by simultaneously evolving a parallel algorithm portfolio (PAP) and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on evolutionary computation s. 1
Hlavní autori: Wang, Zhiyuan, Liu, Shengcai, Yang, Peng, Tang, Ke
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 2025
Predmet:
ISSN:1089-778X, 1941-0026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Generalization is the core objective when training optimizers from data. However, limited training instances often constrain the generalization capability of the trained optimizers. Co-evolutionary approaches address this challenge by simultaneously evolving a parallel algorithm portfolio (PAP) and an instance population to eventually obtain PAPs with good generalization. Yet, when applied to a specific problem class, these approaches have a major limitation. They require practitioners to provide instance generators specially tailored to the problem class, which is often non-trivial to design. This work proposes a general-purpose, off-the-shelf PAP construction approach, named domain-agnostic co-evolution of parameterized search (DACE), for binary optimization problems where decision variables take values of 0 or 1. The key novelty of DACE lies in its neural network-based domain-agnostic instance representation and generation mechanism that eliminates the need for domain-specific instance generators. The strong generality of DACE is validated across three real-world binary optimization problems: the complementary influence maximization problem (CIMP), the compiler arguments optimization problem (CAOP), and the contamination control problem (CCP). Given only a small set of training instances from these problem classes, DACE, without requiring domain knowledge, constructs PAPs with even better generalization performance than existing approaches on all three classes, despite their use of domain-specific instance generators.
AbstractList Generalization is the core objective when training optimizers from data. However, limited training instances often constrain the generalization capability of the trained optimizers. Co-evolutionary approaches address this challenge by simultaneously evolving a parallel algorithm portfolio (PAP) and an instance population to eventually obtain PAPs with good generalization. Yet, when applied to a specific problem class, these approaches have a major limitation. They require practitioners to provide instance generators specially tailored to the problem class, which is often non-trivial to design. This work proposes a general-purpose, off-the-shelf PAP construction approach, named domain-agnostic co-evolution of parameterized search (DACE), for binary optimization problems where decision variables take values of 0 or 1. The key novelty of DACE lies in its neural network-based domain-agnostic instance representation and generation mechanism that eliminates the need for domain-specific instance generators. The strong generality of DACE is validated across three real-world binary optimization problems: the complementary influence maximization problem (CIMP), the compiler arguments optimization problem (CAOP), and the contamination control problem (CCP). Given only a small set of training instances from these problem classes, DACE, without requiring domain knowledge, constructs PAPs with even better generalization performance than existing approaches on all three classes, despite their use of domain-specific instance generators.
Author Tang, Ke
Liu, Shengcai
Yang, Peng
Wang, Zhiyuan
Author_xml – sequence: 1
  givenname: Zhiyuan
  orcidid: 0000-0002-9482-7580
  surname: Wang
  fullname: Wang, Zhiyuan
  email: wangzy2020@mail.sustech.edu.cn
  organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
– sequence: 2
  givenname: Shengcai
  orcidid: 0000-0002-4223-2438
  surname: Liu
  fullname: Liu, Shengcai
  email: liusc3@sustech.edu.cn
  organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
– sequence: 3
  givenname: Peng
  orcidid: 0000-0001-5333-6155
  surname: Yang
  fullname: Yang, Peng
  email: yangp@sustech.edu.cn
  organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
– sequence: 4
  givenname: Ke
  orcidid: 0000-0002-6236-2002
  surname: Tang
  fullname: Tang, Ke
  email: tangk3@sustech.edu.cn
  organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
BookMark eNpFkMFKAzEQhoNUsK0-gOAhL7A12WyyybHWtRYK7aGKtyXdZGskm5RkKSj47mZpwdPMYb6Z-b8JGDnvNAD3GM0wRuJxV70vZjnK6YwwQjGnV2CMRYEzhHI2Sj3iIitL_nEDJjF-IYQLisUY_FYnb0_GHeBSOx2kNT9ybzXcytRbbeHcHnww_WcHtz70rbfGR9j6AJ-Mk-Ebbo696RLUG-_gNvgEdxGejITPvpPGZfOD87E3DVy52EvX6MulAbgF1620Ud9d6hS8vVS7xWu23ixXi_k6azChfab3DAkpuGKsxSmjorkiKTVpy4JrygnTBW9EI4RqlOKoKKlsVSFLzFUKXpIpwOe9TfAxBt3Wx2C69H6NUT34qwd_9eCvvvhLzMOZMVrr_3mcM0wEI38UfHDs
CODEN ITEVF5
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2025.3635185
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 1
ExternalDocumentID 10_1109_TEVC_2025_3635185
11261396
Genre orig-research
GrantInformation_xml – fundername: Guangdong Major Project of Basic and Applied Basic Research
  grantid: 2023B0303000010
– fundername: National Key Research and Development Program of China
  grantid: 2022YFA1004102
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 62272210
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IF
6IK
97E
AAJGR
AASAJ
AAWTH
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IFJZH
M43
VH1
ID FETCH-LOGICAL-c135t-eb609a98d66f1025d52d31093f748e5836e48c9c99dcdd80475afd4a718d10873
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Thu Nov 27 01:00:02 EST 2025
Wed Nov 26 07:22:40 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c135t-eb609a98d66f1025d52d31093f748e5836e48c9c99dcdd80475afd4a718d10873
ORCID 0000-0001-5333-6155
0000-0002-9482-7580
0000-0002-6236-2002
0000-0002-4223-2438
PageCount 1
ParticipantIDs crossref_primary_10_1109_TEVC_2025_3635185
ieee_primary_11261396
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014519
Score 2.4557774
Snippet Generalization is the core objective when training optimizers from data. However, limited training instances often constrain the generalization capability of...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Algorithm configuration
automatic algorithm design
binary optimization problem
Closed box
co-evolutionary algorithm
Evolutionary computation
Feature extraction
Generators
Optimization
parallel algorithm portfolios
Parallel algorithms
Portfolios
Search problems
Training
Tuning
Title Evolving Generalizable Parallel Algorithm Portfolios for Binary Optimization Problems via Domain-Agnostic Instance Generation
URI https://ieeexplore.ieee.org/document/11261396
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCB8hTlJQ9MSIEkTuJ4LKUVLKUDoG6Ra18gUtugNO3Gf8fnGOjCwBZFsWPdl_jO9_oIuUrzXCcJBF4SRtyL1ER6IhfCYwJYOIEYo0-WbIIPh-l4LEauWN3WwgCATT6DG7y0sXxdqiW6ym6x3MVYLMkm2eScN8VaPyED7JPSZNMLYzKmYxfCDHxx-9x_7ZmjYBjfMKNfA-RNXlNCa6wqVqkM2v9czh7ZddYj7TZw75MNmB-Q9jczA3U_6gHZWWszeEg--2YPQscBdU2mMZNrCnQkK2RSMfNN38qqqN9nFBNL83JalAtqrFl6Z6t16ZPZV2auYJOOGgqaBV0Vkt6XM1nMvS6m65k10UdrbSpwb8IBR-Rl0H_uPXiOdsFTAYtrDyaJL6RIDYa5MT9iHYca-4eynEcpxClLIEqVUEJopXXqRzyWuY6k0XLaSJ-zY9Kal3M4ITSJgtDMwbXIIYonZnMIjbxEoIAxyaTfIdffOGQfTXeNzJ5KfJEhaBmCljnQOuQIMfh90In_9I_7Z2Qbhzf-knPSqqslXJAttaqLRXVpP54vzZzD3w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH4aDAl2gAGdxtiGD5yQAklsJ_GRQREIVnooqLfItV9YpLZBbeG2_31-joFeOOwWRfGL5S9579nvxwdwWFSVzTJMoiwVeSTMSEeqUiriCnk6QknRJ082kfd6xXCo-qFY3dfCIKJPPsNjuvSxfNuYJzoqO6FyF-exZCvwUQqRJm251mvQgDqltPn0yjmNxTAEMZNYnQy692duM5jKY-4sbELMyUtmaIlXxZuVi63_nNBn2Az-IzttAd-GDzjdga0XbgYWftUd-LTUaHAX_nadFqKjAxbaTFMu1xhZX8-IS8XJGz80s3rxZ8IotbRqxnUzZ86fZb98vS67dZplEko2Wb8loZmz51qz82ai62l0Sgl7bk7syvubBsObaEAH7i66g7PLKBAvRCbhchHhKIuVVoVDsXIOiLQytdRBlFe5KFAWPENRGGWUssbaIha51JUV2tk561Y_519gddpM8SuwTCSpk5FbVaGQI6ceUrdeKjHIueY63oOjFxzKx7a_Run3JbEqCbSSQCsDaHvQIQzeHgzL_-2d-wewfjn4fVPeXPWu92GDRLWnJ99hdTF7wh-wZp4X9Xz2039I_wAnUscm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolving+Generalizable+Parallel+Algorithm+Portfolios+for+Binary+Optimization+Problems+via+Domain-Agnostic+Instance+Generation&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Wang%2C+Zhiyuan&rft.au=Liu%2C+Shengcai&rft.au=Yang%2C+Peng&rft.au=Tang%2C+Ke&rft.date=2025&rft.issn=1089-778X&rft.eissn=1941-0026&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTEVC.2025.3635185&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2025_3635185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon