Optimized Gas Sensor Array with AI for Distinguishing and Classifying Similar Odorants
This study presents a novel approach for odorant classification by integrating advanced machine learning techniques with an electronic nose (e-nose) system. The system's performance was evaluated with four distinct volatile organic compounds (VOCs)-eucalyptol, 2-nonanone, eugenol, and 2-phenyle...
Gespeichert in:
| Veröffentlicht in: | IEEE sensors journal S. 1 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
2025
|
| Schlagworte: | |
| ISSN: | 1530-437X, 1558-1748 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This study presents a novel approach for odorant classification by integrating advanced machine learning techniques with an electronic nose (e-nose) system. The system's performance was evaluated with four distinct volatile organic compounds (VOCs)-eucalyptol, 2-nonanone, eugenol, and 2-phenylethanol-along with odorless air as a reference. Data acquisition was performed using commercial gas sensors, and the collected VOC data were analyzed usingmultiple machine learning algorithms. Among these, Random Forest and CatBoost achieved the highest classification accuracy (97.1%), demonstrating superior performance in balancing precision and recall. Linear Discriminant Analysis (LDA) was employed to visualize odorant class separation in two and three dimensions, revealing distinct clusters with some overlap between eucalyptol and eugenol. Feature importance analysis identified key predictors for classification, while the confusion matrix highlighted potential areas for improvement, particularly in distinguishing chemically similar odors. The results indicate that the proposed system is highly effective for odorant discrimination, and further optimizations could enhance its accuracy in more complex classification scenarios. |
|---|---|
| AbstractList | This study presents a novel approach for odorant classification by integrating advanced machine learning techniques with an electronic nose (e-nose) system. The system's performance was evaluated with four distinct volatile organic compounds (VOCs)-eucalyptol, 2-nonanone, eugenol, and 2-phenylethanol-along with odorless air as a reference. Data acquisition was performed using commercial gas sensors, and the collected VOC data were analyzed usingmultiple machine learning algorithms. Among these, Random Forest and CatBoost achieved the highest classification accuracy (97.1%), demonstrating superior performance in balancing precision and recall. Linear Discriminant Analysis (LDA) was employed to visualize odorant class separation in two and three dimensions, revealing distinct clusters with some overlap between eucalyptol and eugenol. Feature importance analysis identified key predictors for classification, while the confusion matrix highlighted potential areas for improvement, particularly in distinguishing chemically similar odors. The results indicate that the proposed system is highly effective for odorant discrimination, and further optimizations could enhance its accuracy in more complex classification scenarios. |
| Author | Cuniberti, Gianaurelio Cava, Carlos Eduardo Sun, Helin Huang, Shirong |
| Author_xml | – sequence: 1 givenname: Carlos Eduardo orcidid: 0000-0002-7315-9966 surname: Cava fullname: Cava, Carlos Eduardo email: carloscava@utfpr.edu.br organization: Associate Professor, Federal University Of Technology, Paraná, Brazil – sequence: 2 givenname: Helin surname: Sun fullname: Sun, Helin email: helin.sun@mailbox.tu-dresden.de organization: Institute for Materials Science and Max Bergmann Center for Biomaterials, Master Student, TUD Dresden University of Technology, Dresden, Germany – sequence: 3 givenname: Shirong surname: Huang fullname: Huang, Shirong email: shirong.huang@tu-dresden.de organization: Institute for Materials Science and Max Bergmann Center for Biomaterials, Researcher and Group Leader, TUD Dresden University of Technology, Dresden, Germany – sequence: 4 givenname: Gianaurelio orcidid: 0000-0002-6574-7848 surname: Cuniberti fullname: Cuniberti, Gianaurelio email: gianaurelio.cuniberti@tu-dresden.de organization: Institute for Materials Science and Max Bergmann Center for Biomaterials, Full Professor, TUD Dresden University of Technology, Dresden, Germany |
| BookMark | eNpFkM1OwkAUhScGEwF9ABMX8wLFufPTaZcEETFEFqhx18yvjIGWzNQYfHrbQOLqnHNzz1l8IzSom9ohdAtkAkDK--fN_GVCCRUTJspccnaBhiBEkYHkxaD3jGScyY8rNErpixAopZBD9L4-tGEffp3FC5XwxtWpiXgaozrin9Bu8XSJfXd5CKkN9ed3SNtOsKotnu1USsEf-7zpNnYq4rVtoqrbdI0uvdold3PWMXp7nL_OnrLVerGcTVeZASbaTOvc0lx4Z4hhpjROaS2E4wBW6sLb3AO1jDHCBOScUqk1obqQJDdSqFKyMYLTrolNStH56hDDXsVjBaTqwVQ9mKoHU53BdJ27Uyc45_7_ASjnrGR_ljFh7g |
| CODEN | ISJEAZ |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/JSEN.2025.3596743 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_JSEN_2025_3596743 11124439 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: 390696704 funderid: 10.13039/501100001659 – fundername: 6G-life grantid: 16KISK001K – fundername: HORIZON EUROPE Framework Programme grantid: 101046369 funderid: 10.13039/100018693 – fundername: Volkswagen Foundation grantid: 96632; 9B396 funderid: 10.13039/501100001663 – fundername: Bundesministerium f?r Bildung und Forschung funderid: 10.13039/501100002347 – fundername: Freistaat Sachsen funderid: 10.13039/501100014913 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ 5VS AAYXX AETIX AGSQL AIBXA CITATION EJD H~9 ZY4 |
| ID | FETCH-LOGICAL-c135t-bb6d265fec0c3c9ceabb55e411d7b8fd6f12d333035164227bb02b8706c75a973 |
| IEDL.DBID | RIE |
| ISSN | 1530-437X |
| IngestDate | Sat Nov 29 07:37:56 EST 2025 Wed Aug 27 02:00:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c135t-bb6d265fec0c3c9ceabb55e411d7b8fd6f12d333035164227bb02b8706c75a973 |
| ORCID | 0000-0002-6574-7848 0000-0002-7315-9966 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_11124439 crossref_primary_10_1109_JSEN_2025_3596743 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0019757 |
| Score | 2.4176767 |
| Snippet | This study presents a novel approach for odorant classification by integrating advanced machine learning techniques with an electronic nose (e-nose) system.... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Boosting Algorithms Electronic Nose System Gas Sensors LDA Machine Learning Metal Oxide Odorant Classification Semiconductor |
| Title | Optimized Gas Sensor Array with AI for Distinguishing and Classifying Similar Odorants |
| URI | https://ieeexplore.ieee.org/document/11124439 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZohQQMPAqI8pIHJqS0SVzH8VhBy0OoRSqgbpFfgQ6kKE2Ryq_n7AQoAwNTHoqT6M7ne_m-Q-jMooRFgVIei2jHA40XwzrIlWdRKOHIfSocp-_YYBCPx_y-KlZ3tTDGGLf5zLTsqcvl66ma21BZG-QStBHhNVRjjJXFWt8pA84crCdIsA_fZOMqhRn4vH076g3AFQxpi1Bud93_UkJLXVWcUulv_fN3ttFmZT3ibsnuHbRisgbaWMIUbKC1qq35y2IXPQ1hQXidfBiNr8QMj8BlneYwOhcLbAOwuHuDwWjFl1bQs-d5GY_CItPYNcucuCIoPIJ3gAOMhxrmS1bM9tBjv_dwce1VjRQ8FRBaeFJGOoxoapSviOLKCCkpNZ0g0EzGqY7SINSEEJtVBH8kZFL6obQZUMWo4Izso3o2zcwBwkKEQsWUpg5pjktbXwJXQoHpRjqpaaLzL8ombyVeRuL8DJ8nlg2JZUNSsaGJ9ixVfx6sCHr4x_0jtG6HlxGQY1Qv8rk5QavqvZjM8lM3HT4BrUKxWw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xSYUDSylixwdOSClJHCf1sQLKVgJSAfUW2Y4DPZCiNkUqX8_YCduBA6csSpxoxuPZPG8ADg1KWOgp5UQhCxzUeC1cB7lyDAolHrnLhOV0N4rjVr_P76pidVsLo7W2m89005zaXH46VBMTKjtGuURtRPkszLMg8L2yXOsracAjC-yJMuziV6N-lcT0XH581TuL0Rn0WZMybvbd_1JDP_qqWLXSWfnnD63CcmU_knbJ8DWY0Xkdln6gCtahVjU2f56uw-MtLgkvg3edknMxJj10WocjfHskpsSEYEn7kqDZSk6NqOdPkzIiRUSeEtsuc2DLoEgPx0AXmNymOGPyYtyAh87Z_cmFU7VScJRHWeFIGaZ-yDKtXEUVV1pIyZgOPC-NZCtLw8zzU0qpySuiR-JHUrq-NDlQFTHBI7oBc_kw15tAhPCFajGWWaw5Lk2FCV4JhcYbDTK9BUeflE1eS8SMxHoaLk8MGxLDhqRiwxY0DFW_H6wIuv3H_QOoXdzfdJPuZXy9A4tmqDIesgtzxWii92BBvRWD8WjfTo0PFY-0og |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Gas+Sensor+Array+with+AI+for+Distinguishing+and+Classifying+Similar+Odorants&rft.jtitle=IEEE+sensors+journal&rft.au=Cava%2C+Carlos+Eduardo&rft.au=Sun%2C+Helin&rft.au=Huang%2C+Shirong&rft.au=Cuniberti%2C+Gianaurelio&rft.date=2025&rft.issn=1530-437X&rft.eissn=1558-1748&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJSEN.2025.3596743&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2025_3596743 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |