FirmCCF: Detecting Custom Cryptographic Function Vulnerabilities Through Query-driven Approaches
Cryptographic techniques are widely used to safeguard software against privacy breaches. Efficiently detecting encryption algorithms in software to determine whether they meet security requirements is a critical task. However, traditional static and dynamic detection methods often suffer from high f...
Uloženo v:
| Vydáno v: | IEEE internet of things journal s. 1 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
2025
|
| Témata: | |
| ISSN: | 2327-4662, 2327-4662 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Cryptographic techniques are widely used to safeguard software against privacy breaches. Efficiently detecting encryption algorithms in software to determine whether they meet security requirements is a critical task. However, traditional static and dynamic detection methods often suffer from high false alarm rates or low efficiency, as they cannot fully capture the structural and semantic features of cryptographic algorithms. In this paper, we proposed FirmCCF, a vulnerability detection tool for custom cryptographic functions in Internet of Things (IoT) devices. FirmCCF leverages an improved deep learning encoder-decoder classification model, CodeT5-cate, to identify and classify cryptographic functions in source code and decompiled firmware. It then outputs highly structured metalevel attributes of cryptographic functions via a large language model (LLM) and detects vulnerabilities through a query-driven approach. FirmCCF achieves 99.97% accuracy, 99.72% recall, and 99.86% F1-score in detecting cryptographic functions from binary files. We further define 7 security rules, encode them as queries, and use them to uncover seven categories of vulnerabilities. An evaluation on 40,902 function codes revealed 46 vulnerabilities, including 8 previously unknown issues. Our work highlights the urgent need for systematic assessment solutions to detect and mitigate vulnerabilities in custom cryptographic functions. |
|---|---|
| AbstractList | Cryptographic techniques are widely used to safeguard software against privacy breaches. Efficiently detecting encryption algorithms in software to determine whether they meet security requirements is a critical task. However, traditional static and dynamic detection methods often suffer from high false alarm rates or low efficiency, as they cannot fully capture the structural and semantic features of cryptographic algorithms. In this paper, we proposed FirmCCF, a vulnerability detection tool for custom cryptographic functions in Internet of Things (IoT) devices. FirmCCF leverages an improved deep learning encoder-decoder classification model, CodeT5-cate, to identify and classify cryptographic functions in source code and decompiled firmware. It then outputs highly structured metalevel attributes of cryptographic functions via a large language model (LLM) and detects vulnerabilities through a query-driven approach. FirmCCF achieves 99.97% accuracy, 99.72% recall, and 99.86% F1-score in detecting cryptographic functions from binary files. We further define 7 security rules, encode them as queries, and use them to uncover seven categories of vulnerabilities. An evaluation on 40,902 function codes revealed 46 vulnerabilities, including 8 previously unknown issues. Our work highlights the urgent need for systematic assessment solutions to detect and mitigate vulnerabilities in custom cryptographic functions. |
| Author | Wang, Min Hu, Yupeng Huang, Jing Chen, Jiongyi |
| Author_xml | – sequence: 1 givenname: Jing orcidid: 0009-0006-1062-7482 surname: Huang fullname: Huang, Jing email: huangjjing@hnu.edu.cn organization: College of Computer Science and Electronic Engineering, Hunan University, China – sequence: 2 givenname: Jiongyi surname: Chen fullname: Chen, Jiongyi email: chenjiongyi@nudt.edu.cn organization: National University of Defense Technology, Changsha, China – sequence: 3 givenname: Min surname: Wang fullname: Wang, Min email: s231000691@hnu.edu.cn organization: College of Computer Science and Electronic Engineering, Hunan University, China – sequence: 4 givenname: Yupeng orcidid: 0000-0002-7358-7426 surname: Hu fullname: Hu, Yupeng email: yphu@hnu.edu.cn organization: College of Computer Science and Electronic Engineering, the College of Cyberspace Security, Xiangjiang Laboratory, Hunan University, China |
| BookMark | eNpNkM1KAzEUhYNUsNY-gOAiLzD1JpnMj7syOlopFKG6HfPXTqRNhmRG6NvbUkFX98A931l812jkvDMI3RKYEQLl_etitZ5RoHzGMkYKll6gMWU0T9Iso6N_-QpNY_wCgCPGSZmN0Wdtw76q6gf8aHqjeuu2uBpi7_e4Coeu99sgutYqXA_u-PUOfww7Z4KQdmd7ayJet8EP2xa_DSYcEh3st3F43nXBC9WaeIMuN2IXzfT3TtB7_bSuXpLl6nlRzZeJIoz3icyVlgVP9UYroUsqGXAQIMtMs7LMcygKUDpnXFIlaQ4015kgIJVhkjOQbILIeVcFH2Mwm6YLdi_CoSHQnCw1J0vNyVLza-nI3J0Za4z56xOaUkIJ-wFiDGbe |
| CODEN | IITJAU |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/JIOT.2025.3631834 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_JIOT_2025_3631834 11242121 |
| Genre | orig-research |
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE 4.4 AAYXX AGSQL CITATION EJD |
| ID | FETCH-LOGICAL-c135t-b7cdb854dfdcad92b3050a0b96d399770880cd735b2cb27027d6a10bce3b530b3 |
| IEDL.DBID | RIE |
| ISSN | 2327-4662 |
| IngestDate | Sat Nov 29 06:53:32 EST 2025 Wed Nov 19 08:27:21 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c135t-b7cdb854dfdcad92b3050a0b96d399770880cd735b2cb27027d6a10bce3b530b3 |
| ORCID | 0009-0006-1062-7482 0000-0002-7358-7426 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_11242121 crossref_primary_10_1109_JIOT_2025_3631834 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001105196 |
| Score | 2.327974 |
| Snippet | Cryptographic techniques are widely used to safeguard software against privacy breaches. Efficiently detecting encryption algorithms in software to determine... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | CodeT5-cate Custom cryptographic function query-driven |
| Title | FirmCCF: Detecting Custom Cryptographic Function Vulnerabilities Through Query-driven Approaches |
| URI | https://ieeexplore.ieee.org/document/11242121 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA86PHhxPibOFzl4EjqTNk0Wb6NaVGQqzLFbbR6FgXvQrcL-e5M0Y3rw4C2UBMr35cv3-94AXOVaM80VDqgojIEScxpwEqpAFjE28D7CymVVDp9Zv98djfirL1Z3tTBaa5d8pjt26WL5aiYr6yq7MdjABjCNsbPNGK2LtTYOFWzRCPWRS4z4zdPjy8BYgGHciai9uuSX7vkxTMXpkrT5z7_YB3seNMJezeUDsKWnh6C5HsgAvXwegY90XE6SJL2Fd9oGB4xagkll4N0EJuVqvqzbU48lTI02sxyBw-rTtp12GbLGZoaDemwPfKt0uQpUad9C2PN9x_WiBd7T-0HyEPgRCoHEUbwMBJNKdGOiCiVzxUNhxBvlSHCqDDJhzLwxSCoWxSKUwpamMUVzjITUkYgjJKJj0JjOpvoEQKKxkShRFN1QkxBRLokte2WSE0Zortrgek3cbF53ysichYF4ZjmRWU5knhNt0LKE3Wz0ND394_sZ2LXHa9_HOWgsy0pfgB35tRwvykt3Eb4Bf2ezQA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA8yBb04HxPnMwdPQrc-0mTxNqpl0zkV6titNo_CwD3oWmH_vUnaMT148BZKCOX78uX7fW8AbhIpiaTCsTBLlYHiU2xR5AqLp76j4L3nCJNVORqQ4bAzHtPXqljd1MJIKU3ymWzppYnlizkvtKusrbCBDmAqY2fbR8i1y3KtjUvF0XgEV7FLx6btx_5LpGxA1295WF9e9Ev7_BinYrRJWP_nfxyA_Qo2wm7J50OwJWdHoL4eyQArCT0GH-EkmwZBeAfvpQ4PKMUEg0IBvCkMstUiLxtUTzgMlT7TPIGj4lM3njY5sspqhlE5uAe-FTJbWSLTryHsVp3H5bIB3sOHKOhZ1RAFizuen1uMcME6PhKp4ImgLlMCbic2o1gobEKIemVsLojnM5czXZxGBE4cm3HpMd-zmXcCarP5TJ4CiKSjZIqlaceVivqYcqQLXwmniCCciCa4XRM3XpS9MmJjY9g01pyINSfiihNN0NCE3WysaHr2x_drsNuLngfxoD98Ogd7-qjSE3IBanlWyEuww7_yyTK7MpfiG_6ltoc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FirmCCF%3A+Detecting+Custom+Cryptographic+Function+Vulnerabilities+Through+Query-driven+Approaches&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Huang%2C+Jing&rft.au=Chen%2C+Jiongyi&rft.au=Wang%2C+Min&rft.au=Hu%2C+Yupeng&rft.date=2025&rft.issn=2327-4662&rft.eissn=2327-4662&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJIOT.2025.3631834&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2025_3631834 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |