Low-complexity Repetitive Double-Vector Model Predictive Control Optimization Strategy for T-type Three-level Converter

Conventional multi-vector model predictive control (MV-MPC) for three-level converters suffers from high computational complexity and low optimal voltage-vector (VV) tracking accuracy, resulting in poor overall performance of converter. To address these issues, this paper proposes a low-complexity r...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on power electronics s. 1 - 13
Hlavní autori: Fang, Jian, Li, Ruihua, Wang, Hanqing, Sun, Chenwei, Hu, Bo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 2025
Predmet:
ISSN:0885-8993, 1941-0107
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Conventional multi-vector model predictive control (MV-MPC) for three-level converters suffers from high computational complexity and low optimal voltage-vector (VV) tracking accuracy, resulting in poor overall performance of converter. To address these issues, this paper proposes a low-complexity repetitive double-vector model predictive control (LC-RDVMPC) optimization strategy for T-type three-level converters. To overcome the limited control bandwidth of conventional MV-MPC, this paper presents a SVPWM-sector identification method. Through constructing assistant lines to rapidly locating the sector of reference VV, this method reduces the times of cost function calculation and virtual VVs synthesis, decreasing the computational complexity of MV-MPC and improving the bandwidth of control system. Moreover, a repetitive double-vector synthesis method is proposed for synthesizing virtual VV in two steps. An auxiliary VV is generated firstly, and then virtual VV with capability of covering the whole output voltage range is synthesized, which improves the optimal VV tracking accuracy of MV-MPC. Finally, the effectiveness of the proposed method is verified through experiments.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2025.3626673