An Adaptive Steering-Vector-Based Evolutionary Algorithm for Influence Maximization in Social Networks
Influence Maximization (IM) is to select a subset of nodes from a social network such that the number of nodes influenced by this subset will be maximized. Due to the growing size of social networks, the search space for IM algorithms also expands, the higher computational overhead leads many schola...
Saved in:
| Published in: | IEEE transactions on network science and engineering pp. 1 - 14 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
2025
|
| Subjects: | |
| ISSN: | 2327-4697, 2334-329X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Influence Maximization (IM) is to select a subset of nodes from a social network such that the number of nodes influenced by this subset will be maximized. Due to the growing size of social networks, the search space for IM algorithms also expands, the higher computational overhead leads many scholars to explore more effective and efficient IM algorithms. In this paper, we design an adaptive steering vector (ASV) representing the importance of nodes to guide population evolution, and propose a novel meta-heuristic algorithm named ASVEA to solve the IM problem effectively and efficiently. In ASVEA, an efficient node selection method based on ASV is designed and fully harnessed to speed up the population convergence while not losing potentially important nodes. Specifically, based on ASV, we design novel evolutionary operators as well as a local search strategy to search for the high quality seed set. Furthermore, the steering vector updating strategies including local update and global update are designed to enhance the effectiveness of the steering vector. Experimental results concerning influence spread and running time on eight real-world networks demonstrate that the proposed ASVEA strikes a better trade-off between effectiveness (i.e., the number of influenced nodes) and efficiency (i.e., the running time) compared to five representative algorithms. |
|---|---|
| AbstractList | Influence Maximization (IM) is to select a subset of nodes from a social network such that the number of nodes influenced by this subset will be maximized. Due to the growing size of social networks, the search space for IM algorithms also expands, the higher computational overhead leads many scholars to explore more effective and efficient IM algorithms. In this paper, we design an adaptive steering vector (ASV) representing the importance of nodes to guide population evolution, and propose a novel meta-heuristic algorithm named ASVEA to solve the IM problem effectively and efficiently. In ASVEA, an efficient node selection method based on ASV is designed and fully harnessed to speed up the population convergence while not losing potentially important nodes. Specifically, based on ASV, we design novel evolutionary operators as well as a local search strategy to search for the high quality seed set. Furthermore, the steering vector updating strategies including local update and global update are designed to enhance the effectiveness of the steering vector. Experimental results concerning influence spread and running time on eight real-world networks demonstrate that the proposed ASVEA strikes a better trade-off between effectiveness (i.e., the number of influenced nodes) and efficiency (i.e., the running time) compared to five representative algorithms. |
| Author | Yang, Haipeng Zhang, Lei Ma, Kaicong Xu, Xinxiang Ge, Yuanyuan |
| Author_xml | – sequence: 1 givenname: Lei surname: Zhang fullname: Zhang, Lei email: zl@ahu.edu.cn – sequence: 2 givenname: Xinxiang surname: Xu fullname: Xu, Xinxiang email: xinxiangxu22@foxmail.com – sequence: 3 givenname: Kaicong surname: Ma fullname: Ma, Kaicong email: mkc17@foxmail.com – sequence: 4 givenname: Yuanyuan surname: Ge fullname: Ge, Yuanyuan email: geyuanyg@163.com – sequence: 5 givenname: Haipeng surname: Yang fullname: Yang, Haipeng email: haipengyang@126.com |
| BookMark | eNpFkM1OwzAQhC0EEqX0AZA4-AVS_BMn3WOoClQq5dCCuEXGWRdDaldOWn6enkatxF5mDzOj0XdBTn3wSMgVZ0POGdws54vJUDChhlJBJhickJ6QMk2kgNfT7hd5kmaQn5NB03wwxrgYZVLKHrGFp0WlN63bIV20iNH5VfKCpg0xudUNVnSyC_W2dcHr-EOLehWia9_X1IZIp97WW_QG6aP-dmv3qzsfdZ4ugnG6pnNsv0L8bC7JmdV1g4Oj9snz3WQ5fkhmT_fTcTFLDJeqTXQOoBQolJV-GzGQeQraWDRguTRyZNNMaMsqZcFaY1iF2uZZbtPU5AoAZJ_wQ6-JoWki2nIT3Xo_vOSs7FiVHauyY1UeWe0z14eMQ8R___6AZUr-AX2paak |
| CODEN | ITNSD5 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TNSE.2025.3596209 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2334-329X |
| EndPage | 14 |
| ExternalDocumentID | 10_1109_TNSE_2025_3596209 11119065 |
| Genre | orig-research |
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX AGSQL CITATION EJD IEDLZ |
| ID | FETCH-LOGICAL-c135t-a7995595e3dab8093749acfec9f13c38f462af0d5f9ffcc0deaf767f44c759993 |
| IEDL.DBID | RIE |
| ISSN | 2327-4697 |
| IngestDate | Sat Nov 29 07:38:54 EST 2025 Sun Sep 28 03:48:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c135t-a7995595e3dab8093749acfec9f13c38f462af0d5f9ffcc0deaf767f44c759993 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_11119065 crossref_primary_10_1109_TNSE_2025_3596209 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on network science and engineering |
| PublicationTitleAbbrev | TNSE |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001286333 |
| Score | 2.2926476 |
| Snippet | Influence Maximization (IM) is to select a subset of nodes from a social network such that the number of nodes influenced by this subset will be maximized. Due... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Approximation algorithms Diffusion models Evolutionary computation Greedy algorithms Heuristic algorithms Influence maximization Integrated circuit modeling Meta-heuristic algorithm Metaheuristics Search problems Social network Social networking (online) Steering vector Vectors |
| Title | An Adaptive Steering-Vector-Based Evolutionary Algorithm for Influence Maximization in Social Networks |
| URI | https://ieeexplore.ieee.org/document/11119065 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2334-329X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286333 issn: 2327-4697 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxPnFzl4ErK1TdM0xyoberAIm7JbyfKhA9eNrhv635u0GfbiwVsICZT3S_o-8n7vAXBLiI4olgJZfwOFEdHmzk01UtL3uSeplB6vmk3QNI0nE_biyOoVF0YpVSWfqZ4dVm_5ciHWNlTWt9ebGZ3ZAi1KaU3WagRU4ghj7F4ufY_1x-loYDzAgPSw7TFjcw4buqfRTKXSJcPDf37FEThwRiNMapSPwY7KT8B-o5TgKdBJDhPJl_bvBUdlPY3eqpg8ujeqSsLBxh0zXnzD5PN9UczKjzk0Vit82rYqgc_8azZ33Ew4y2FN34VpnS2-6oDX4WD88IhcDwUkfExKxG3BN8KIwpJPY88YIyHjQivBtI8FjnUYBVx7kmimtRCeVFzTiOowFJQY4xGfgXa-yNU5gF7EjbejBaW26H7IpwzHkge-AZTEvgq64G4r3WxZl8rIKhfDY5mFIrNQZA6KLuhYyf4udEK9-GP-EuzZ7XXw4wq0y2KtrsGu2JSzVXFTnYQfYQC0qQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86BfXg58T5mYMnoVvaNG1zrLKx4VaETdmtZPnQgutG1w39703aDnfx4C2EEMr7JX0feb_3ALgnRHk-Ftwy_oblekTpOzdRlhS2zZDwhUCsaDbhR1EwHtOXiqxecGGklEXymWyaYfGWL2Z8aUJlLXO9qdaZ22CHuK5jl3StjZBK4GGMq7dLG9HWKBq2tQ_okCY2XWZM1uGG9tlop1Jok87RP7_jGBxWZiMMS5xPwJZMT8HBRjHBM6DCFIaCzc3_Cw7zctp6K6Ly1qNWVgK2V9VBY9k3DD_fZ1mSf0yhtlthb92sBA7YVzKt2JkwSWFJ4IVRmS--qIPXTnv01LWqLgoWtzHJLWZKvhFKJBZsEiBtjriUcSU5VTbmOFCu5zCFBFFUKc6RkEz5nq9cl_tEm4_4HNTSWSovAEQe0_6O4r5vyu67bEJxIJhja0hJYEunAR7W0o3nZbGMuHAyEI0NFLGBIq6gaIC6kezvwkqol3_M34G97mjQj_u96PkK7JutylDINajl2VLegF2-ypNFdlucih_yEbfw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adaptive+Steering-Vector-Based+Evolutionary+Algorithm+for+Influence+Maximization+in+Social+Networks&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Zhang%2C+Lei&rft.au=Xu%2C+Xinxiang&rft.au=Ma%2C+Kaicong&rft.au=Ge%2C+Yuanyuan&rft.date=2025&rft.issn=2327-4697&rft.eissn=2334-329X&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTNSE.2025.3596209&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSE_2025_3596209 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |