An Adaptive Steering-Vector-Based Evolutionary Algorithm for Influence Maximization in Social Networks

Influence Maximization (IM) is to select a subset of nodes from a social network such that the number of nodes influenced by this subset will be maximized. Due to the growing size of social networks, the search space for IM algorithms also expands, the higher computational overhead leads many schola...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on network science and engineering pp. 1 - 14
Main Authors: Zhang, Lei, Xu, Xinxiang, Ma, Kaicong, Ge, Yuanyuan, Yang, Haipeng
Format: Journal Article
Language:English
Published: IEEE 2025
Subjects:
ISSN:2327-4697, 2334-329X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Influence Maximization (IM) is to select a subset of nodes from a social network such that the number of nodes influenced by this subset will be maximized. Due to the growing size of social networks, the search space for IM algorithms also expands, the higher computational overhead leads many scholars to explore more effective and efficient IM algorithms. In this paper, we design an adaptive steering vector (ASV) representing the importance of nodes to guide population evolution, and propose a novel meta-heuristic algorithm named ASVEA to solve the IM problem effectively and efficiently. In ASVEA, an efficient node selection method based on ASV is designed and fully harnessed to speed up the population convergence while not losing potentially important nodes. Specifically, based on ASV, we design novel evolutionary operators as well as a local search strategy to search for the high quality seed set. Furthermore, the steering vector updating strategies including local update and global update are designed to enhance the effectiveness of the steering vector. Experimental results concerning influence spread and running time on eight real-world networks demonstrate that the proposed ASVEA strikes a better trade-off between effectiveness (i.e., the number of influenced nodes) and efficiency (i.e., the running time) compared to five representative algorithms.
AbstractList Influence Maximization (IM) is to select a subset of nodes from a social network such that the number of nodes influenced by this subset will be maximized. Due to the growing size of social networks, the search space for IM algorithms also expands, the higher computational overhead leads many scholars to explore more effective and efficient IM algorithms. In this paper, we design an adaptive steering vector (ASV) representing the importance of nodes to guide population evolution, and propose a novel meta-heuristic algorithm named ASVEA to solve the IM problem effectively and efficiently. In ASVEA, an efficient node selection method based on ASV is designed and fully harnessed to speed up the population convergence while not losing potentially important nodes. Specifically, based on ASV, we design novel evolutionary operators as well as a local search strategy to search for the high quality seed set. Furthermore, the steering vector updating strategies including local update and global update are designed to enhance the effectiveness of the steering vector. Experimental results concerning influence spread and running time on eight real-world networks demonstrate that the proposed ASVEA strikes a better trade-off between effectiveness (i.e., the number of influenced nodes) and efficiency (i.e., the running time) compared to five representative algorithms.
Author Yang, Haipeng
Zhang, Lei
Ma, Kaicong
Xu, Xinxiang
Ge, Yuanyuan
Author_xml – sequence: 1
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  email: zl@ahu.edu.cn
– sequence: 2
  givenname: Xinxiang
  surname: Xu
  fullname: Xu, Xinxiang
  email: xinxiangxu22@foxmail.com
– sequence: 3
  givenname: Kaicong
  surname: Ma
  fullname: Ma, Kaicong
  email: mkc17@foxmail.com
– sequence: 4
  givenname: Yuanyuan
  surname: Ge
  fullname: Ge, Yuanyuan
  email: geyuanyg@163.com
– sequence: 5
  givenname: Haipeng
  surname: Yang
  fullname: Yang, Haipeng
  email: haipengyang@126.com
BookMark eNpFkM1OwzAQhC0EEqX0AZA4-AVS_BMn3WOoClQq5dCCuEXGWRdDaldOWn6enkatxF5mDzOj0XdBTn3wSMgVZ0POGdws54vJUDChhlJBJhickJ6QMk2kgNfT7hd5kmaQn5NB03wwxrgYZVLKHrGFp0WlN63bIV20iNH5VfKCpg0xudUNVnSyC_W2dcHr-EOLehWia9_X1IZIp97WW_QG6aP-dmv3qzsfdZ4ugnG6pnNsv0L8bC7JmdV1g4Oj9snz3WQ5fkhmT_fTcTFLDJeqTXQOoBQolJV-GzGQeQraWDRguTRyZNNMaMsqZcFaY1iF2uZZbtPU5AoAZJ_wQ6-JoWki2nIT3Xo_vOSs7FiVHauyY1UeWe0z14eMQ8R___6AZUr-AX2paak
CODEN ITNSD5
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TNSE.2025.3596209
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 14
ExternalDocumentID 10_1109_TNSE_2025_3596209
11119065
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
AGSQL
CITATION
EJD
IEDLZ
ID FETCH-LOGICAL-c135t-a7995595e3dab8093749acfec9f13c38f462af0d5f9ffcc0deaf767f44c759993
IEDL.DBID RIE
ISSN 2327-4697
IngestDate Sat Nov 29 07:38:54 EST 2025
Sun Sep 28 03:48:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c135t-a7995595e3dab8093749acfec9f13c38f462af0d5f9ffcc0deaf767f44c759993
PageCount 14
ParticipantIDs ieee_primary_11119065
crossref_primary_10_1109_TNSE_2025_3596209
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001286333
Score 2.2926476
Snippet Influence Maximization (IM) is to select a subset of nodes from a social network such that the number of nodes influenced by this subset will be maximized. Due...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Approximation algorithms
Diffusion models
Evolutionary computation
Greedy algorithms
Heuristic algorithms
Influence maximization
Integrated circuit modeling
Meta-heuristic algorithm
Metaheuristics
Search problems
Social network
Social networking (online)
Steering vector
Vectors
Title An Adaptive Steering-Vector-Based Evolutionary Algorithm for Influence Maximization in Social Networks
URI https://ieeexplore.ieee.org/document/11119065
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2334-329X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286333
  issn: 2327-4697
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxPnFzl4ErK1TdM0xyoberAIm7JbyfKhA9eNrhv635u0GfbiwVsICZT3S_o-8n7vAXBLiI4olgJZfwOFEdHmzk01UtL3uSeplB6vmk3QNI0nE_biyOoVF0YpVSWfqZ4dVm_5ciHWNlTWt9ebGZ3ZAi1KaU3WagRU4ghj7F4ufY_1x-loYDzAgPSw7TFjcw4buqfRTKXSJcPDf37FEThwRiNMapSPwY7KT8B-o5TgKdBJDhPJl_bvBUdlPY3eqpg8ujeqSsLBxh0zXnzD5PN9UczKjzk0Vit82rYqgc_8azZ33Ew4y2FN34VpnS2-6oDX4WD88IhcDwUkfExKxG3BN8KIwpJPY88YIyHjQivBtI8FjnUYBVx7kmimtRCeVFzTiOowFJQY4xGfgXa-yNU5gF7EjbejBaW26H7IpwzHkge-AZTEvgq64G4r3WxZl8rIKhfDY5mFIrNQZA6KLuhYyf4udEK9-GP-EuzZ7XXw4wq0y2KtrsGu2JSzVXFTnYQfYQC0qQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86BfXg58T5mYMnoVvaNG1zrLKx4VaETdmtZPnQgutG1w39703aDnfx4C2EEMr7JX0feb_3ALgnRHk-Ftwy_oblekTpOzdRlhS2zZDwhUCsaDbhR1EwHtOXiqxecGGklEXymWyaYfGWL2Z8aUJlLXO9qdaZ22CHuK5jl3StjZBK4GGMq7dLG9HWKBq2tQ_okCY2XWZM1uGG9tlop1Jok87RP7_jGBxWZiMMS5xPwJZMT8HBRjHBM6DCFIaCzc3_Cw7zctp6K6Ly1qNWVgK2V9VBY9k3DD_fZ1mSf0yhtlthb92sBA7YVzKt2JkwSWFJ4IVRmS--qIPXTnv01LWqLgoWtzHJLWZKvhFKJBZsEiBtjriUcSU5VTbmOFCu5zCFBFFUKc6RkEz5nq9cl_tEm4_4HNTSWSovAEQe0_6O4r5vyu67bEJxIJhja0hJYEunAR7W0o3nZbGMuHAyEI0NFLGBIq6gaIC6kezvwkqol3_M34G97mjQj_u96PkK7JutylDINajl2VLegF2-ypNFdlucih_yEbfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adaptive+Steering-Vector-Based+Evolutionary+Algorithm+for+Influence+Maximization+in+Social+Networks&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Zhang%2C+Lei&rft.au=Xu%2C+Xinxiang&rft.au=Ma%2C+Kaicong&rft.au=Ge%2C+Yuanyuan&rft.date=2025&rft.issn=2327-4697&rft.eissn=2334-329X&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTNSE.2025.3596209&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSE_2025_3596209
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon