Optimizing Technician Staffing and Scheduling in Medical Procedure Services Using Two-Stage Stochastic Integer Programming
Technicians in medical procedure services are essential for ensuring smooth procedures. Widely seen in procedure rooms and operating rooms, fixed work shifts can cause a mismatch between technician demand and supply, resulting in overtime. It may compromise patient care quality and technician job sa...
Saved in:
| Published in: | IEEE transactions on automation science and engineering p. 1 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
2025
|
| Subjects: | |
| ISSN: | 1545-5955, 1558-3783 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Technicians in medical procedure services are essential for ensuring smooth procedures. Widely seen in procedure rooms and operating rooms, fixed work shifts can cause a mismatch between technician demand and supply, resulting in overtime. It may compromise patient care quality and technician job satisfaction. While flexible shift scheduling can help balance workload, it remains challenging to determine the optimal technician team configuration to avoid both understaffing and overstaffing. The uncertainties of technician workload and paid time off (PTO) further complicate the problem. To address these challenges, we propose a two-stage stochastic programming model integrating staffing and scheduling decisions, while accounting for both workload and PTO uncertainties. We propose an algorithm based on Benders' decomposition to identify high-quality solutions. Numerical experiments suggest that the proposed algorithm solves large-scale problems with high solution quality and faster speed than the direct use of Gurobi Optimizer. Our analysis also highlights the effectiveness of adopting 8- and 10-hour work shifts with different start times, and the benefits of incorporating PTO. |
|---|---|
| AbstractList | Technicians in medical procedure services are essential for ensuring smooth procedures. Widely seen in procedure rooms and operating rooms, fixed work shifts can cause a mismatch between technician demand and supply, resulting in overtime. It may compromise patient care quality and technician job satisfaction. While flexible shift scheduling can help balance workload, it remains challenging to determine the optimal technician team configuration to avoid both understaffing and overstaffing. The uncertainties of technician workload and paid time off (PTO) further complicate the problem. To address these challenges, we propose a two-stage stochastic programming model integrating staffing and scheduling decisions, while accounting for both workload and PTO uncertainties. We propose an algorithm based on Benders' decomposition to identify high-quality solutions. Numerical experiments suggest that the proposed algorithm solves large-scale problems with high solution quality and faster speed than the direct use of Gurobi Optimizer. Our analysis also highlights the effectiveness of adopting 8- and 10-hour work shifts with different start times, and the benefits of incorporating PTO. |
| Author | Shahraki, Narges Wang, Feifan Zhang, Mirui |
| Author_xml | – sequence: 1 givenname: Mirui surname: Zhang fullname: Zhang, Mirui email: zmr24@mails.tsinghua.edu.cn organization: Department of Industrial Engineering, Tsinghua University, Beijing, China – sequence: 2 givenname: Narges surname: Shahraki fullname: Shahraki, Narges email: Shahraki.Narges@mayo.edu organization: Mayo Clinic, USA – sequence: 3 givenname: Feifan orcidid: 0000-0002-8204-8758 surname: Wang fullname: Wang, Feifan email: wangfeifan@tsinghua.edu.cn organization: Department of Industrial Engineering, Tsinghua University, Beijing, China |
| BookMark | eNpFkM1OwzAQhC1UJNrCAyBx8Auk-CeO42NVFahUVKS058g469SocSo7gOjTk9BKnHb325k5zASNfOsBoXtKZpQS9bidF8sZI0zMeEYZV-QKjakQecJlzkfDnopEKCFu0CTGD0JYmisyRqfNsXONOzlf4y2YvXfGaY-LTls7MO0rXJg9VJ-H4XQev0LljD7gt9CaHgfABYQvZyDiXfyL-W6T3l_3j641ex07Z_DKd1BDGFx10E3TC2_RtdWHCHeXOUW7p-V28ZKsN8-rxXydGMpFl2heSZpTyHjOJUitiFHArQDbs1Srd5kBJxkXKeOyx5SkMqNK2cwyaxjlU0TPuSa0MQaw5TG4RoefkpJyKK8cyiuH8spLeb3n4exxAPCvp1QKmjP-C4-_bqw |
| CODEN | ITASC7 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TASE.2025.3612390 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TASE_2025_3612390 11175182 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 72401156 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI O9- OCL PQQKQ RIA RIE RNS 5VS AAYXX AETIX AGSQL AIBXA CITATION EJD M43 |
| ID | FETCH-LOGICAL-c135t-a3d7181e63837e7a90c9e3f5ef1e64a9b76e306354237f5e10476199f6f2fc213 |
| IEDL.DBID | RIE |
| ISSN | 1545-5955 |
| IngestDate | Sat Nov 29 07:27:44 EST 2025 Wed Oct 01 07:05:17 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c135t-a3d7181e63837e7a90c9e3f5ef1e64a9b76e306354237f5e10476199f6f2fc213 |
| ORCID | 0000-0002-8204-8758 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_11175182 crossref_primary_10_1109_TASE_2025_3612390 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0024890 |
| Score | 2.3891377 |
| Snippet | Technicians in medical procedure services are essential for ensuring smooth procedures. Widely seen in procedure rooms and operating rooms, fixed work shifts... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Complexity theory Computational modeling Job shop scheduling Medical services Numerical models Personnel Programming Schedules scheduling staffing Stochastic processes stochastic programming technician Uncertainty |
| Title | Optimizing Technician Staffing and Scheduling in Medical Procedure Services Using Two-Stage Stochastic Integer Programming |
| URI | https://ieeexplore.ieee.org/document/11175182 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADzyLKSx6YkNwmcRzHY4VaMaCC1IK6RU5slw5NUEhB6q_H56RqFwa25OKTIp_le3-H0D0PQgUDB4iXCkVCq0JIrLKQUJWy1GrQ2LhizPdnPh7Hs5l4bZrVXS-M1toVn-kePLpcviqyFYTK-j7gSlqDuIVanEd1s9YWWC92ARUwCQgTjDUpTN8T_elgMrSuYMB6FNBG4P7dUUI7U1WcUhkd__N3TtBRYz3iQS3uU7Sn8zN0uIMpeI7WL_YSWC7W9gW7uLmLW2AY02uAJnOFJ1ZSCkrQ53iR4yZXg13PgFqVGm8uEOwKCvD0pyCWf24_VEX2IQHaGUMoca5L4IICr6Vd2EFvo-H08Yk0AxZI5lNWEUmVVU2-jsBN1VwKLxOaGqaNpYVSpDzS1qWgDGpnLBlgHazDJUxkApMFPr1A7bzI9SXCJogZTz0ZS1-EMVXSS6k9HpSmMqVciC562Ox48lnjaCTO__BEAuJJQDxJI54u6sBubxc2G331B_0aHQB7HRm5Qe2qXOlbtJ99V4uv8s4dk1_RTrt- |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UTdSDnxjxswdPJsVtXdl6JAaCEdGEabgt3doiBzYzhyb89faVEbh48La9tUvzXtPX9_V7CN0Gni-h4QBxEi6Jb1QICWXqEyoTlhgNGmqbjPneDwaDcDTir1Wxuq2FUUrZ5DPVhEcby5d5OgNX2b0LuJLmQryJtqB1VlWutYLWC61LBS4FhHHGqiCm6_D7qD3sGGPQY00KeCNwAq-pobW-KlatdA_-uaBDtF_dH3F7IfAjtKGyY7S3hip4guYv5hiYTubmBVvPufVcYGjUq4EmMomHRlYSktDHeJLhKlqDbdWAnBUKL48QbFMKcPSTEzN_bD6UefohANwZgzNxrAqYBSleUzOwjt66neihR6oWCyR1KSuJoNIoJ1e1wFBVgeBOyhXVTGlD8wVPgpYyRgVlkD1jyADsYEwurlva06nn0lNUy_JMnSGsvZAFiSNC4XI_pFI4CTUbhNJEJDTgvIHulhyPPxdIGrG1QBweg3hiEE9ciaeB6sDt1cCK0ed_0G_QTi967sf9x8HTBdqFXy38JJeoVhYzdYW20-9y8lVc2y3zC8H2vsc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Technician+Staffing+and+Scheduling+in+Medical+Procedure+Services+Using+Two-Stage+Stochastic+Integer+Programming&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Zhang%2C+Mirui&rft.au=Shahraki%2C+Narges&rft.au=Wang%2C+Feifan&rft.date=2025&rft.pub=IEEE&rft.issn=1545-5955&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTASE.2025.3612390&rft.externalDocID=11175182 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |