An Evolutionary Ising Optimization Framework for Unconstrained Binary Quadratic Programming

An Ising machine (IM), as a type of analog computer tailored for tackling intractable combinatorial optimization problems, has attracted remarkable attention in recent years. In contrast to the blossoming field of bespoke IM hardware, developing metaheuristics from IMs remains largely uninvestigated...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on evolutionary computation s. 1
Hlavní autori: Fu, Wujie, Trivedi, Anupam, Chen, Guanyu, Gao, Yuan, Srinivasan, Dipti, Danner, Aaron
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 2025
Predmet:
ISSN:1089-778X, 1941-0026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract An Ising machine (IM), as a type of analog computer tailored for tackling intractable combinatorial optimization problems, has attracted remarkable attention in recent years. In contrast to the blossoming field of bespoke IM hardware, developing metaheuristics from IMs remains largely uninvestigated. Here, we propose a physics-inspired evolutionary computation paradigm, termed the Ising optimization framework (IOF); it comprises a unique Ising algorithm and a hybrid annealing scheme, which together are well-suited for solving quadratic unconstrained binary optimization (QUBO) problems embedded in Ising system energy. The Ising algorithm leverages a set of iterated self-mapping functions to evolve an Ising-spin swarm, enabling efficient energy minimization in artificial Ising systems while mitigating detrimental chaos. Complementing the algorithm, a hybrid annealing scheme integrating singular value dropout, bifurcation control, and a nudging strategy, is devised to augment the overall optimization capacity. The effectiveness of the IOF is validated on various Ising and Max-cut problems with decision variables ranging from 625 to 5000 in number. In comparison to four major types of methods for solving QUBOs, including IM simulations, nature-inspired algorithms, a state-of-the-art heuristic, and the commercial solver Gurobi, the IOF consistently demonstrates notable optimization quality and computational efficiency. This paper provides a theoretical foundation and practical guidelines for bridging Ising-inspired approaches with evolutionary computation, offering an evolutionary perspective on Ising optimizations and suggesting a fertile avenue for future research and application.
AbstractList An Ising machine (IM), as a type of analog computer tailored for tackling intractable combinatorial optimization problems, has attracted remarkable attention in recent years. In contrast to the blossoming field of bespoke IM hardware, developing metaheuristics from IMs remains largely uninvestigated. Here, we propose a physics-inspired evolutionary computation paradigm, termed the Ising optimization framework (IOF); it comprises a unique Ising algorithm and a hybrid annealing scheme, which together are well-suited for solving quadratic unconstrained binary optimization (QUBO) problems embedded in Ising system energy. The Ising algorithm leverages a set of iterated self-mapping functions to evolve an Ising-spin swarm, enabling efficient energy minimization in artificial Ising systems while mitigating detrimental chaos. Complementing the algorithm, a hybrid annealing scheme integrating singular value dropout, bifurcation control, and a nudging strategy, is devised to augment the overall optimization capacity. The effectiveness of the IOF is validated on various Ising and Max-cut problems with decision variables ranging from 625 to 5000 in number. In comparison to four major types of methods for solving QUBOs, including IM simulations, nature-inspired algorithms, a state-of-the-art heuristic, and the commercial solver Gurobi, the IOF consistently demonstrates notable optimization quality and computational efficiency. This paper provides a theoretical foundation and practical guidelines for bridging Ising-inspired approaches with evolutionary computation, offering an evolutionary perspective on Ising optimizations and suggesting a fertile avenue for future research and application.
Author Chen, Guanyu
Gao, Yuan
Fu, Wujie
Srinivasan, Dipti
Danner, Aaron
Trivedi, Anupam
Author_xml – sequence: 1
  givenname: Wujie
  orcidid: 0000-0003-1208-4259
  surname: Fu
  fullname: Fu, Wujie
  organization: NUS graduate school, National University of Singapore, Singapore, Singapore
– sequence: 2
  givenname: Anupam
  orcidid: 0000-0002-3066-5578
  surname: Trivedi
  fullname: Trivedi, Anupam
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
– sequence: 3
  givenname: Guanyu
  orcidid: 0000-0001-7388-7149
  surname: Chen
  fullname: Chen, Guanyu
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
– sequence: 4
  givenname: Yuan
  surname: Gao
  fullname: Gao, Yuan
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
– sequence: 5
  givenname: Dipti
  orcidid: 0000-0003-4877-3478
  surname: Srinivasan
  fullname: Srinivasan, Dipti
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
– sequence: 6
  givenname: Aaron
  orcidid: 0000-0002-9090-9626
  surname: Danner
  fullname: Danner, Aaron
  email: adanner@nus.edu.sg
  organization: NUS graduate school, National University of Singapore, Singapore, Singapore
BookMark eNpNkN1KAzEQhYNUsK0-gOBFXmBrZrP5u6yl1UKhCq0IXizZNC3RblKyW0Wf3qz1wqsZhnMOc74B6vngLULXQEYARN2ups-TUU5yNqKMc8XpGeqDKiAjJOe9tBOpMiHkywUaNM0bIVAwUH30OvZ4-hH2x9YFr-MXnjfO7_Dy0LrafevuimdR1_YzxHe8DRGvvQm-aaN23m7wnft1PR31Jia1wY8x7JK-TimX6Hyr9429-ptDtJ5NV5OHbLG8n0_Gi8wAZW0moOBVZY2VXBFNgOdagrWsYJpVKnWgxBSVYNRYAxWjwPTGUkJlJTQvBKFDBKdcE0PTRLstD9HV6a0SSNnRKTs6ZUen_KOTPDcnj7PW_tMrqYQU9AeDpmRl
CODEN ITEVF5
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2025.3566963
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Computer Science
EISSN 1941-0026
EndPage 1
ExternalDocumentID 10_1109_TEVC_2025_3566963
10989787
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 2024IAIS-QN018
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 62405035
  funderid: 10.13039/501100001809
– fundername: National Research Foundation Singapore
  grantid: NRF 2021-QEP2-02-P12; NRF CRP24-2020-0003
  funderid: 10.13039/501100001381
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
HZ~
IEGSK
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IFJZH
VH1
ID FETCH-LOGICAL-c135t-7146bbece8690a0162a81ee545a5b994130c4b753cec1b5315ade3038b7a64703
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Sat Nov 29 07:57:54 EST 2025
Wed Aug 27 01:53:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c135t-7146bbece8690a0162a81ee545a5b994130c4b753cec1b5315ade3038b7a64703
ORCID 0000-0002-9090-9626
0000-0003-4877-3478
0000-0002-3066-5578
0000-0001-7388-7149
0000-0003-1208-4259
PageCount 1
ParticipantIDs ieee_primary_10989787
crossref_primary_10_1109_TEVC_2025_3566963
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014519
Score 2.455819
Snippet An Ising machine (IM), as a type of analog computer tailored for tackling intractable combinatorial optimization problems, has attracted remarkable attention...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Annealing
Computational efficiency
Computational modeling
Couplings
energy minimization
Heuristic algorithms
Ising model
Metaheuristics
Minimization
nature-inspired metaheuristic
Optimization
Physics
quadratic unconstrained binary optimization
Stationary state
Title An Evolutionary Ising Optimization Framework for Unconstrained Binary Quadratic Programming
URI https://ieeexplore.ieee.org/document/10989787
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-4oaAHp1NxfpGDJ6GzW9qmOc6xoSBzwiYDDyVJU_CwTvYF_ve-fEzmwYO3NiSlvI-830veB8AtjdAGFCoKChHqIFJpFIg2voYFKxJpTKgrkvTMBoN0MuFDn6xuc2G01jb4TDfNo73Lz2dqZY7KUMN5il4Pq0CFMeaStX6uDEydFBdNzxEyphN_hYlr7ke9ty66gu24SRG98IT-MkJbXVWsUenX_vk7R3Do0SPpOHYfw44u61DbdGYgXlHrcLBVZrAOezbMUy1O4L1Tkt7aS5uYf5Enc1RAXnDfmPqETNLfhGsRxLNkXCqDIE0jCZ2TB5u9S15XIjeSo8jQhXdN8SunMO73Rt3HwLdXCFSLxsuA4SYpkYXaNKUSCP3aIm1pjZBKxJJzY91UJNGdUVq1JOpqLHKNFi-VTCQR7hRnUC1npT4HEiYFjsQ6p0pGIkaO55RylYgW0kdS1YC7Db2zT1dFI7PeR8gzw5zMMCfzzGnAqaH11kRH5os_xi9h3yx35yJXUF3OV_oadtV6-bGY31gh-QbNZLsY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxFH5R1KgHUcSIaw-eTAZn6Sw9IoFARMQEDImHSdvpJB4YDFviv_d1phg8ePA203SayVv6vte-BeDOo2gDUkmtlNvKojKiFnfx1U7DNBDahBZFknphvx-Nx2xgktXzXBilVB58pur6Mb_LT6ZyqY_KUMNZhF5PuA07PqWuU6Rr_Vwa6EopRTw9Q9AYjc0lJn71MGy9NdEZdP26h_iFBd4vM7TRVyU3K-3yP3_oGI4MfiSNguEnsKWyCpTXvRmIUdUKHG4UGqzAXh7oKeen8N7ISGtl5I3PvkhXHxaQF9w5JiYlk7TXAVsEES0ZZVJjSN1KQiXkMc_fJa9LnmjZkWRQBHhNcJUqjNqtYbNjmQYLlnQ8f2GFuE0KZKLSbak4gj-XR45SCKq4LxjT9k1SgQ6NVNIRqK0-TxTavEiEPKC4V5xBKZtm6hyIHaQ44qvEk4JyH3meeB6TAXeQPsKTNbhf0zv-LOpoxLn_YbNYMyfWzIkNc2pQ1bTemFiQ-eKP8VvY7wyfe3Gv23-6hAO9VHFKcgWlxWyprmFXrhYf89lNLjDftQu-Xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Evolutionary+Ising+Optimization+Framework+for+Unconstrained+Binary+Quadratic+Programming&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Fu%2C+Wujie&rft.au=Trivedi%2C+Anupam&rft.au=Chen%2C+Guanyu&rft.au=Gao%2C+Yuan&rft.date=2025&rft.issn=1089-778X&rft.eissn=1941-0026&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTEVC.2025.3566963&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2025_3566963
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon