An Evolutionary Ising Optimization Framework for Unconstrained Binary Quadratic Programming
An Ising machine (IM), as a type of analog computer tailored for tackling intractable combinatorial optimization problems, has attracted remarkable attention in recent years. In contrast to the blossoming field of bespoke IM hardware, developing metaheuristics from IMs remains largely uninvestigated...
Uložené v:
| Vydané v: | IEEE transactions on evolutionary computation s. 1 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
2025
|
| Predmet: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | An Ising machine (IM), as a type of analog computer tailored for tackling intractable combinatorial optimization problems, has attracted remarkable attention in recent years. In contrast to the blossoming field of bespoke IM hardware, developing metaheuristics from IMs remains largely uninvestigated. Here, we propose a physics-inspired evolutionary computation paradigm, termed the Ising optimization framework (IOF); it comprises a unique Ising algorithm and a hybrid annealing scheme, which together are well-suited for solving quadratic unconstrained binary optimization (QUBO) problems embedded in Ising system energy. The Ising algorithm leverages a set of iterated self-mapping functions to evolve an Ising-spin swarm, enabling efficient energy minimization in artificial Ising systems while mitigating detrimental chaos. Complementing the algorithm, a hybrid annealing scheme integrating singular value dropout, bifurcation control, and a nudging strategy, is devised to augment the overall optimization capacity. The effectiveness of the IOF is validated on various Ising and Max-cut problems with decision variables ranging from 625 to 5000 in number. In comparison to four major types of methods for solving QUBOs, including IM simulations, nature-inspired algorithms, a state-of-the-art heuristic, and the commercial solver Gurobi, the IOF consistently demonstrates notable optimization quality and computational efficiency. This paper provides a theoretical foundation and practical guidelines for bridging Ising-inspired approaches with evolutionary computation, offering an evolutionary perspective on Ising optimizations and suggesting a fertile avenue for future research and application. |
|---|---|
| AbstractList | An Ising machine (IM), as a type of analog computer tailored for tackling intractable combinatorial optimization problems, has attracted remarkable attention in recent years. In contrast to the blossoming field of bespoke IM hardware, developing metaheuristics from IMs remains largely uninvestigated. Here, we propose a physics-inspired evolutionary computation paradigm, termed the Ising optimization framework (IOF); it comprises a unique Ising algorithm and a hybrid annealing scheme, which together are well-suited for solving quadratic unconstrained binary optimization (QUBO) problems embedded in Ising system energy. The Ising algorithm leverages a set of iterated self-mapping functions to evolve an Ising-spin swarm, enabling efficient energy minimization in artificial Ising systems while mitigating detrimental chaos. Complementing the algorithm, a hybrid annealing scheme integrating singular value dropout, bifurcation control, and a nudging strategy, is devised to augment the overall optimization capacity. The effectiveness of the IOF is validated on various Ising and Max-cut problems with decision variables ranging from 625 to 5000 in number. In comparison to four major types of methods for solving QUBOs, including IM simulations, nature-inspired algorithms, a state-of-the-art heuristic, and the commercial solver Gurobi, the IOF consistently demonstrates notable optimization quality and computational efficiency. This paper provides a theoretical foundation and practical guidelines for bridging Ising-inspired approaches with evolutionary computation, offering an evolutionary perspective on Ising optimizations and suggesting a fertile avenue for future research and application. |
| Author | Chen, Guanyu Gao, Yuan Fu, Wujie Srinivasan, Dipti Danner, Aaron Trivedi, Anupam |
| Author_xml | – sequence: 1 givenname: Wujie orcidid: 0000-0003-1208-4259 surname: Fu fullname: Fu, Wujie organization: NUS graduate school, National University of Singapore, Singapore, Singapore – sequence: 2 givenname: Anupam orcidid: 0000-0002-3066-5578 surname: Trivedi fullname: Trivedi, Anupam organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore – sequence: 3 givenname: Guanyu orcidid: 0000-0001-7388-7149 surname: Chen fullname: Chen, Guanyu organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore – sequence: 4 givenname: Yuan surname: Gao fullname: Gao, Yuan organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore – sequence: 5 givenname: Dipti orcidid: 0000-0003-4877-3478 surname: Srinivasan fullname: Srinivasan, Dipti organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore – sequence: 6 givenname: Aaron orcidid: 0000-0002-9090-9626 surname: Danner fullname: Danner, Aaron email: adanner@nus.edu.sg organization: NUS graduate school, National University of Singapore, Singapore, Singapore |
| BookMark | eNpNkN1KAzEQhYNUsK0-gOBFXmBrZrP5u6yl1UKhCq0IXizZNC3RblKyW0Wf3qz1wqsZhnMOc74B6vngLULXQEYARN2ups-TUU5yNqKMc8XpGeqDKiAjJOe9tBOpMiHkywUaNM0bIVAwUH30OvZ4-hH2x9YFr-MXnjfO7_Dy0LrafevuimdR1_YzxHe8DRGvvQm-aaN23m7wnft1PR31Jia1wY8x7JK-TimX6Hyr9429-ptDtJ5NV5OHbLG8n0_Gi8wAZW0moOBVZY2VXBFNgOdagrWsYJpVKnWgxBSVYNRYAxWjwPTGUkJlJTQvBKFDBKdcE0PTRLstD9HV6a0SSNnRKTs6ZUen_KOTPDcnj7PW_tMrqYQU9AeDpmRl |
| CODEN | ITEVF5 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TEVC.2025.3566963 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics Computer Science |
| EISSN | 1941-0026 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TEVC_2025_3566963 10989787 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 2024IAIS-QN018 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 62405035 funderid: 10.13039/501100001809 – fundername: National Research Foundation Singapore grantid: NRF 2021-QEP2-02-P12; NRF CRP24-2020-0003 funderid: 10.13039/501100001381 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS HZ~ IEGSK IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IFJZH VH1 |
| ID | FETCH-LOGICAL-c135t-7146bbece8690a0162a81ee545a5b994130c4b753cec1b5315ade3038b7a64703 |
| IEDL.DBID | RIE |
| ISSN | 1089-778X |
| IngestDate | Sat Nov 29 07:57:54 EST 2025 Wed Aug 27 01:53:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c135t-7146bbece8690a0162a81ee545a5b994130c4b753cec1b5315ade3038b7a64703 |
| ORCID | 0000-0002-9090-9626 0000-0003-4877-3478 0000-0002-3066-5578 0000-0001-7388-7149 0000-0003-1208-4259 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_10989787 crossref_primary_10_1109_TEVC_2025_3566963 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0014519 |
| Score | 2.455819 |
| Snippet | An Ising machine (IM), as a type of analog computer tailored for tackling intractable combinatorial optimization problems, has attracted remarkable attention... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Annealing Computational efficiency Computational modeling Couplings energy minimization Heuristic algorithms Ising model Metaheuristics Minimization nature-inspired metaheuristic Optimization Physics quadratic unconstrained binary optimization Stationary state |
| Title | An Evolutionary Ising Optimization Framework for Unconstrained Binary Quadratic Programming |
| URI | https://ieeexplore.ieee.org/document/10989787 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-4oaAHp1NxfpGDJ6GzW9qmOc6xoSBzwiYDDyVJU_CwTvYF_ve-fEzmwYO3NiSlvI-830veB8AtjdAGFCoKChHqIFJpFIg2voYFKxJpTKgrkvTMBoN0MuFDn6xuc2G01jb4TDfNo73Lz2dqZY7KUMN5il4Pq0CFMeaStX6uDEydFBdNzxEyphN_hYlr7ke9ty66gu24SRG98IT-MkJbXVWsUenX_vk7R3Do0SPpOHYfw44u61DbdGYgXlHrcLBVZrAOezbMUy1O4L1Tkt7aS5uYf5Enc1RAXnDfmPqETNLfhGsRxLNkXCqDIE0jCZ2TB5u9S15XIjeSo8jQhXdN8SunMO73Rt3HwLdXCFSLxsuA4SYpkYXaNKUSCP3aIm1pjZBKxJJzY91UJNGdUVq1JOpqLHKNFi-VTCQR7hRnUC1npT4HEiYFjsQ6p0pGIkaO55RylYgW0kdS1YC7Db2zT1dFI7PeR8gzw5zMMCfzzGnAqaH11kRH5os_xi9h3yx35yJXUF3OV_oadtV6-bGY31gh-QbNZLsY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxFH5R1KgHUcSIaw-eTAZn6Sw9IoFARMQEDImHSdvpJB4YDFviv_d1phg8ePA203SayVv6vte-BeDOo2gDUkmtlNvKojKiFnfx1U7DNBDahBZFknphvx-Nx2xgktXzXBilVB58pur6Mb_LT6ZyqY_KUMNZhF5PuA07PqWuU6Rr_Vwa6EopRTw9Q9AYjc0lJn71MGy9NdEZdP26h_iFBd4vM7TRVyU3K-3yP3_oGI4MfiSNguEnsKWyCpTXvRmIUdUKHG4UGqzAXh7oKeen8N7ISGtl5I3PvkhXHxaQF9w5JiYlk7TXAVsEES0ZZVJjSN1KQiXkMc_fJa9LnmjZkWRQBHhNcJUqjNqtYbNjmQYLlnQ8f2GFuE0KZKLSbak4gj-XR45SCKq4LxjT9k1SgQ6NVNIRqK0-TxTavEiEPKC4V5xBKZtm6hyIHaQ44qvEk4JyH3meeB6TAXeQPsKTNbhf0zv-LOpoxLn_YbNYMyfWzIkNc2pQ1bTemFiQ-eKP8VvY7wyfe3Gv23-6hAO9VHFKcgWlxWyprmFXrhYf89lNLjDftQu-Xw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Evolutionary+Ising+Optimization+Framework+for+Unconstrained+Binary+Quadratic+Programming&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Fu%2C+Wujie&rft.au=Trivedi%2C+Anupam&rft.au=Chen%2C+Guanyu&rft.au=Gao%2C+Yuan&rft.date=2025&rft.issn=1089-778X&rft.eissn=1941-0026&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTEVC.2025.3566963&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2025_3566963 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |