Tandem Generalized Variational Autoencoder Network for Multi-Solutions Inverse Design
Inspired by the variational autoencoder (VAE), we propose a novel multi-solutions strategy combined with a tandem neural network for inverse design and optimization problems. In the training, a latent vector <inline-formula><tex-math notation="LaTeX">z</tex-math></inli...
Gespeichert in:
| Veröffentlicht in: | IEEE antennas and wireless propagation letters S. 1 - 5 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
2025
|
| Schlagworte: | |
| ISSN: | 1536-1225, 1548-5757 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Inspired by the variational autoencoder (VAE), we propose a novel multi-solutions strategy combined with a tandem neural network for inverse design and optimization problems. In the training, a latent vector <inline-formula><tex-math notation="LaTeX">z</tex-math></inline-formula> is concatenated to perturb the <inline-formula><tex-math notation="LaTeX">S_{11}</tex-math></inline-formula> as input to the decoder. Within this framework, a multi-band slotted dipole antenna is employed as an example to validate the feasibility of the proposed network. Experimental results demonstrate that the proposed method not only breaks the one-to-one limitation between inputs and outputs in neural networks to generate diverse solutions, but also significantly accelerates model convergence through the introduction of a tandem architecture, compared with conventional generative adversarial approaches. The network potentially provides an efficient framework for solving inverse problems involving multi-solutions and optimization. |
|---|---|
| ISSN: | 1536-1225 1548-5757 |
| DOI: | 10.1109/LAWP.2025.3626410 |