Tandem Generalized Variational Autoencoder Network for Multi-Solutions Inverse Design
Inspired by the variational autoencoder (VAE), we propose a novel multi-solutions strategy combined with a tandem neural network for inverse design and optimization problems. In the training, a latent vector <inline-formula><tex-math notation="LaTeX">z</tex-math></inli...
Saved in:
| Published in: | IEEE antennas and wireless propagation letters pp. 1 - 5 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
2025
|
| Subjects: | |
| ISSN: | 1536-1225, 1548-5757 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Inspired by the variational autoencoder (VAE), we propose a novel multi-solutions strategy combined with a tandem neural network for inverse design and optimization problems. In the training, a latent vector <inline-formula><tex-math notation="LaTeX">z</tex-math></inline-formula> is concatenated to perturb the <inline-formula><tex-math notation="LaTeX">S_{11}</tex-math></inline-formula> as input to the decoder. Within this framework, a multi-band slotted dipole antenna is employed as an example to validate the feasibility of the proposed network. Experimental results demonstrate that the proposed method not only breaks the one-to-one limitation between inputs and outputs in neural networks to generate diverse solutions, but also significantly accelerates model convergence through the introduction of a tandem architecture, compared with conventional generative adversarial approaches. The network potentially provides an efficient framework for solving inverse problems involving multi-solutions and optimization. |
|---|---|
| AbstractList | Inspired by the variational autoencoder (VAE), we propose a novel multi-solutions strategy combined with a tandem neural network for inverse design and optimization problems. In the training, a latent vector <inline-formula><tex-math notation="LaTeX">z</tex-math></inline-formula> is concatenated to perturb the <inline-formula><tex-math notation="LaTeX">S_{11}</tex-math></inline-formula> as input to the decoder. Within this framework, a multi-band slotted dipole antenna is employed as an example to validate the feasibility of the proposed network. Experimental results demonstrate that the proposed method not only breaks the one-to-one limitation between inputs and outputs in neural networks to generate diverse solutions, but also significantly accelerates model convergence through the introduction of a tandem architecture, compared with conventional generative adversarial approaches. The network potentially provides an efficient framework for solving inverse problems involving multi-solutions and optimization. |
| Author | Yuan, Tianguo Yang, Xiaolin Li, Yang |
| Author_xml | – sequence: 1 givenname: Tianguo orcidid: 0009-0001-0735-3381 surname: Yuan fullname: Yuan, Tianguo email: nameytg@icloud.com organization: School of Physics, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Yang orcidid: 0000-0002-1377-7690 surname: Li fullname: Li, Yang email: yli@uestc.edu.cn organization: School of Physics, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Xiaolin orcidid: 0000-0002-0248-1675 surname: Yang fullname: Yang, Xiaolin email: yxlin@uestc.edu.cn organization: School of Physics, University of Electronic Science and Technology of China, Chengdu, China |
| BookMark | eNpFkMtKAzEYhYMoaKsPILjIC0zNn0wusyxVa6FewFaXQ8z8kdExkWSq6NPr0IKrcxbnO4tvRPZDDEjIKbAJAKvOl9On-wlnXE6E4qoEtkeOQJamkFrq_aELVQDn8pCMcn5lDLSS4oisVzY0-E7nGDDZrv3Bhj7a1Nq-jcF2dLrpIwYXG0z0FvuvmN6oj4nebLq-LR5itxmGmS7CJ6aM9AJz-xKOyYG3XcaTXY7J-upyNbsulnfzxWy6LBwI2RfS2kYbXQlVSqsrNMyphnOmHTO-rBxwY5pKeNegLb235lnx0oERruJaeRBjAttfl2LOCX39kdp3m75rYPXgpR681IOXeufljznbMi0i_u-BQ8WFFL9fb2HW |
| CODEN | IAWPA7 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/LAWP.2025.3626410 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1548-5757 |
| EndPage | 5 |
| ExternalDocumentID | 10_1109_LAWP_2025_3626410 11219235 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI O9- OCL P2P RIA RIE RNS AAYXX AETIX AGSQL AIBXA CITATION EJD M43 |
| ID | FETCH-LOGICAL-c135t-5aad78793645a79e80c6d2207c08f49c1288d93fcdea4ffa8b624c183c9276f13 |
| IEDL.DBID | RIE |
| ISSN | 1536-1225 |
| IngestDate | Sat Nov 29 06:55:33 EST 2025 Wed Nov 05 07:10:40 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c135t-5aad78793645a79e80c6d2207c08f49c1288d93fcdea4ffa8b624c183c9276f13 |
| ORCID | 0000-0002-0248-1675 0000-0002-1377-7690 0009-0001-0735-3381 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_11219235 crossref_primary_10_1109_LAWP_2025_3626410 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE antennas and wireless propagation letters |
| PublicationTitleAbbrev | LAWP |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0017653 |
| Score | 2.419192 |
| Snippet | Inspired by the variational autoencoder (VAE), we propose a novel multi-solutions strategy combined with a tandem neural network for inverse design and... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Antenna Convergence Decoding Inverse design multi-solutions Neural networks Optimization Perturbation methods Slot antennas tandem neural network Training variational autoencoder Vectors |
| Title | Tandem Generalized Variational Autoencoder Network for Multi-Solutions Inverse Design |
| URI | https://ieeexplore.ieee.org/document/11219235 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1548-5757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017653 issn: 1536-1225 databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BxQADzyLKSx6YkNKmzsPxWAEVA6o6tNAtSvyQOtCiNGXg13PnmNKFgS2yEsn67Mu9vwO447GKpLYyiAuJDoot0wDVUD_QHCWr0Ir-y27YhBiNstlMjn2zuuuFMca44jPTpUeXy9dLtaZQWQ9tAzJIkl3YFSJtmrU2KQOROspJlGAaLMMTn8Lsh7L3MngboyvIky6Rr8TULbulhLamqjilMjz653aO4dBbj2zQHPcJ7JjFKRxscQqewXRCYeF35vmk519Gs1d0iH3Qjw3W9ZLIK7Wp2KipAWdouDLXiRtsomSMCDiqlWGPrsSjDdPh0-ThOfCzEwLVj5I6SIpCoyxKyjIWQposVKnmPBQqzGwsFaqlTMvIKm2K2NoiK1M8NpRvJblIbT86h9ZiuTAXwBKql0K_SltTxiVaLEqWgivU86EVmUo7cP8DZv7RUGTkzrUIZU7I54R87pHvQJuA_H3RY3j5x_oV7NPnTdDjGlp1tTY3sKc-6_mqunU34Bvsbq_W |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6CggQMnEWU0wMTUtrEOT1WQFVEiTq00C1KfEgdaFGaMvDr8XNM6cLAFllRZH32y7u_B3BLA-4zoZgT5Ew7KKqIHK2GPEdQLVm54PhfNsMm4jRNJhM2tM3qphdGSmmKz2QbH00uX8z5EkNlHW0boEESbsIWjs4K63atVdIgjgzppJZhHC1DQ5vE9FzWGXTfhtoZpGEb6VcC7JddU0Nrc1WMWukd_HNDh7Bv7UfSrQ_8CDbk7Bj21lgFT2A8wsDwO7GM0tMvKcirdolt2I90l9Uc6SuFLElaV4ETbboS04vrrOJkBCk4yoUkD6bIownj3uPovu_Y6QkO9_ywcsI8F1oaGeYZ85jJxOWRoNSNuZuogHGtmBLBfMWFzAOl8qSI9MFpCeeMxpHy_FNozOYzeQYkxIop7VkJJYug0DYLZ0VMudb0rooTHrXg7gfM7KMmyciMc-GyDJHPEPnMIt-CJgL5-6LF8PyP9RvY6Y9eBtngKX2-gF38VB0CuYRGVS7lFWzzz2q6KK_NbfgGSYGzIQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tandem+Generalized+Variational+Autoencoder+Network+for+Multi-Solutions+Inverse+Design&rft.jtitle=IEEE+antennas+and+wireless+propagation+letters&rft.au=Yuan%2C+Tianguo&rft.au=Li%2C+Yang&rft.au=Yang%2C+Xiaolin&rft.date=2025&rft.pub=IEEE&rft.issn=1536-1225&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLAWP.2025.3626410&rft.externalDocID=11219235 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1225&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1225&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1225&client=summon |