Tandem Generalized Variational Autoencoder Network for Multi-Solutions Inverse Design

Inspired by the variational autoencoder (VAE), we propose a novel multi-solutions strategy combined with a tandem neural network for inverse design and optimization problems. In the training, a latent vector <inline-formula><tex-math notation="LaTeX">z</tex-math></inli...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE antennas and wireless propagation letters s. 1 - 5
Hlavní autoři: Yuan, Tianguo, Li, Yang, Yang, Xiaolin
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 2025
Témata:
ISSN:1536-1225, 1548-5757
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Inspired by the variational autoencoder (VAE), we propose a novel multi-solutions strategy combined with a tandem neural network for inverse design and optimization problems. In the training, a latent vector <inline-formula><tex-math notation="LaTeX">z</tex-math></inline-formula> is concatenated to perturb the <inline-formula><tex-math notation="LaTeX">S_{11}</tex-math></inline-formula> as input to the decoder. Within this framework, a multi-band slotted dipole antenna is employed as an example to validate the feasibility of the proposed network. Experimental results demonstrate that the proposed method not only breaks the one-to-one limitation between inputs and outputs in neural networks to generate diverse solutions, but also significantly accelerates model convergence through the introduction of a tandem architecture, compared with conventional generative adversarial approaches. The network potentially provides an efficient framework for solving inverse problems involving multi-solutions and optimization.
AbstractList Inspired by the variational autoencoder (VAE), we propose a novel multi-solutions strategy combined with a tandem neural network for inverse design and optimization problems. In the training, a latent vector <inline-formula><tex-math notation="LaTeX">z</tex-math></inline-formula> is concatenated to perturb the <inline-formula><tex-math notation="LaTeX">S_{11}</tex-math></inline-formula> as input to the decoder. Within this framework, a multi-band slotted dipole antenna is employed as an example to validate the feasibility of the proposed network. Experimental results demonstrate that the proposed method not only breaks the one-to-one limitation between inputs and outputs in neural networks to generate diverse solutions, but also significantly accelerates model convergence through the introduction of a tandem architecture, compared with conventional generative adversarial approaches. The network potentially provides an efficient framework for solving inverse problems involving multi-solutions and optimization.
Author Yuan, Tianguo
Yang, Xiaolin
Li, Yang
Author_xml – sequence: 1
  givenname: Tianguo
  orcidid: 0009-0001-0735-3381
  surname: Yuan
  fullname: Yuan, Tianguo
  email: nameytg@icloud.com
  organization: School of Physics, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Yang
  orcidid: 0000-0002-1377-7690
  surname: Li
  fullname: Li, Yang
  email: yli@uestc.edu.cn
  organization: School of Physics, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Xiaolin
  orcidid: 0000-0002-0248-1675
  surname: Yang
  fullname: Yang, Xiaolin
  email: yxlin@uestc.edu.cn
  organization: School of Physics, University of Electronic Science and Technology of China, Chengdu, China
BookMark eNpFkMtKAzEYhYMoaKsPILjIC0zNn0wusyxVa6FewFaXQ8z8kdExkWSq6NPr0IKrcxbnO4tvRPZDDEjIKbAJAKvOl9On-wlnXE6E4qoEtkeOQJamkFrq_aELVQDn8pCMcn5lDLSS4oisVzY0-E7nGDDZrv3Bhj7a1Nq-jcF2dLrpIwYXG0z0FvuvmN6oj4nebLq-LR5itxmGmS7CJ6aM9AJz-xKOyYG3XcaTXY7J-upyNbsulnfzxWy6LBwI2RfS2kYbXQlVSqsrNMyphnOmHTO-rBxwY5pKeNegLb235lnx0oERruJaeRBjAttfl2LOCX39kdp3m75rYPXgpR681IOXeufljznbMi0i_u-BQ8WFFL9fb2HW
CODEN IAWPA7
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LAWP.2025.3626410
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1548-5757
EndPage 5
ExternalDocumentID 10_1109_LAWP_2025_3626410
11219235
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
M43
ID FETCH-LOGICAL-c135t-5aad78793645a79e80c6d2207c08f49c1288d93fcdea4ffa8b624c183c9276f13
IEDL.DBID RIE
ISSN 1536-1225
IngestDate Sat Nov 29 06:55:33 EST 2025
Wed Nov 05 07:10:40 EST 2025
IsPeerReviewed false
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c135t-5aad78793645a79e80c6d2207c08f49c1288d93fcdea4ffa8b624c183c9276f13
ORCID 0000-0002-0248-1675
0000-0002-1377-7690
0009-0001-0735-3381
PageCount 5
ParticipantIDs ieee_primary_11219235
crossref_primary_10_1109_LAWP_2025_3626410
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE antennas and wireless propagation letters
PublicationTitleAbbrev LAWP
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0017653
Score 2.4191086
Snippet Inspired by the variational autoencoder (VAE), we propose a novel multi-solutions strategy combined with a tandem neural network for inverse design and...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Antenna
Convergence
Decoding
Inverse design
multi-solutions
Neural networks
Optimization
Perturbation methods
Slot antennas
tandem neural network
Training
variational autoencoder
Vectors
Title Tandem Generalized Variational Autoencoder Network for Multi-Solutions Inverse Design
URI https://ieeexplore.ieee.org/document/11219235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1548-5757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017653
  issn: 1536-1225
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLVoxQADzyLKSx6YkNImjmPHYwVUDKjq0EK3yPFD6kBbpSkDX4-vY0oXBrYoiqXoJFf3ec5F6J5wmVvnJ6KSxTKCzl4kGGxzt1oSbcukVMovm-CjUT6biXEgq3sujDHGD5-ZHlz6Xr5eqg2UyvouNoCAJGuhFuesIWttWwaceclJZ8GwWIZkoYWZxKL_Ongfu1SQZD0QX6HAlt1xQjtbVbxTGR7_83VO0FGIHvGg-dynaM8sztDhjqbgOZpOoCz8gYOe9PzLaPzmEuJQ9MODTb0E8UptKjxqZsCxC1yxZ-JG2yoZBgGOam3wkx_x6KDp8Hny-BKF3QmRStKsjjIptbNFAV1GyYXJY8U0ITFXcW6pUM4t5VqkVmkjqbUyLxmhytm3EoQzm6QXqL1YLswlwlIJQ9Myz1jKKZWZTJQ7bKiSJdUstV308ANmsWokMgqfWsSiAOQLQL4IyHdRB4D8fTBgePXH_Wt0AMeboscNatfVxtyiffVZz9fVnf8DvgFBsK9j
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwGLWgIAEDZxHl9MCElDZxbCceK6AqokQdWugWOT6kDrQoTRn49diOKV0Y2KIoiaKXfPru9wC4RQlPtfETQUFDHtjOXsCoVXPXkiOpi6gQwolNJFmWTiZs6JfV3S6MUsoNn6m2PXS9fDkXS1sq65jYwAYkZBNsEYxRWK9rrZoGCXWkk8aGrbQMIr6JGYWsM-i-DU0yiEjb0q9guy-75obWdFWcW-kd_POFDsG-jx9ht_7gR2BDzY7B3hqr4AkYj2xh-B16Runpl5Lw1aTEvuwHu8tqbukrpSphVk-BQxO6QreLG6zqZNBScJQLBR_ckEcTjHuPo_t-4NUTAhHFpAoI59JYI7N9Rp4wlYaCSoTCRISpxkwYx5RKFmshFcda87SgCAtj4YKhhOooPgWN2XymzgDkgikcFymhcYIxJzwS5maFBS-wpLFugbsfMPOPmiQjd8lFyHKLfG6Rzz3yLdC0QP5e6DE8_-P8Ddjpj14G-eApe74Au_ZRdQnkEjSqcqmuwLb4rKaL8tr9Dd-QlbKq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tandem+Generalized+Variational+Autoencoder+Network+for+Multi-Solutions+Inverse+Design&rft.jtitle=IEEE+antennas+and+wireless+propagation+letters&rft.au=Yuan%2C+Tianguo&rft.au=Li%2C+Yang&rft.au=Yang%2C+Xiaolin&rft.date=2025&rft.pub=IEEE&rft.issn=1536-1225&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLAWP.2025.3626410&rft.externalDocID=11219235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1225&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1225&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1225&client=summon