Enhancing Agricultural Operations: Big Data Analytics Using Distributed and Parallel Computing
This comprehensive research investigates using distributed and parallel computing for big data analytics in agriculture to improve farming operations' sustainability, efficiency, and innovation. The paper emphasizes how big data analytics, cloud computing, and parallel distributed processing ca...
Gespeichert in:
| Veröffentlicht in: | International Journal of Emerging Engineering and Technology Jg. 2; H. 2; S. 1 - 7 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Swedish College of Egineering and Technology
30.12.2023
|
| Schlagworte: | |
| ISSN: | 2958-3764, 2958-3764 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This comprehensive research investigates using distributed and parallel computing for big data analytics in agriculture to improve farming operations' sustainability, efficiency, and innovation. The paper emphasizes how big data analytics, cloud computing, and parallel distributed processing can revolutionize the agricultural industry. The research objectives include investigating the benefits and limitations of big data analytics in precision farming and crop monitoring, identifying the constraints of integrating big data analytics in agriculture and investigating the role of frameworks such as Hadoop and Spark in processing and analyzing agricultural data for informed decision-making and optimized farming operations. The methodology used in the paper is a literature review, which draws on various sources to provide insights into the topic matter. The findings indicate that big data analytics can considerably improve precision farming and crop monitoring; nevertheless, there are hurdles to incorporating big data analytics in agriculture, such as data privacy and security concerns. According to the study, frameworks such as Hadoop and Spark are crucial in processing and analyzing agricultural data for informed decision-making and better farming operations. Overall, this study offers useful insights into the possibilities of big data analytics and distributed and parallel computing in revolutionizing the agriculture industry. |
|---|---|
| AbstractList | This comprehensive research investigates using distributed and parallel computing for big data analytics in agriculture to improve farming operations' sustainability, efficiency, and innovation. The paper emphasizes how big data analytics, cloud computing, and parallel distributed processing can revolutionize the agricultural industry. The research objectives include investigating the benefits and limitations of big data analytics in precision farming and crop monitoring, identifying the constraints of integrating big data analytics in agriculture and investigating the role of frameworks such as Hadoop and Spark in processing and analyzing agricultural data for informed decision-making and optimized farming operations. The methodology used in the paper is a literature review, which draws on various sources to provide insights into the topic matter. The findings indicate that big data analytics can considerably improve precision farming and crop monitoring; nevertheless, there are hurdles to incorporating big data analytics in agriculture, such as data privacy and security concerns. According to the study, frameworks such as Hadoop and Spark are crucial in processing and analyzing agricultural data for informed decision-making and better farming operations. Overall, this study offers useful insights into the possibilities of big data analytics and distributed and parallel computing in revolutionizing the agriculture industry. |
| Author | Fatima, Syeda Alishba Saad Ahmed Syeda Faiza Nasim |
| Author_xml | – sequence: 1 givenname: Syeda Alishba surname: Fatima fullname: Fatima, Syeda Alishba – sequence: 2 surname: Syeda Faiza Nasim fullname: Syeda Faiza Nasim – sequence: 3 surname: Saad Ahmed fullname: Saad Ahmed |
| BookMark | eNpNkDFPwzAUhC0EEqV04B94ZSjYsR3HbKUtUKlSGehK9Ow4wVHqVHaC1H9PaAEx3dPp7tPTXaFz33qL0A0ld0ISTu8_WV2rMlVnaJQokU2ZTPn5v_sSTWKsCSGMUaYoH6H3pf8Ab5yv8KwKzvRN1wdo8GZvA3Su9fEBP7oKL6ADPPPQHDpnIt7G78bCxS443Xe2wOAL_ApDtbENnre7fd8NkWt0UUIT7eRHx2j7tHybv0zXm-fVfLaeGsqEmlpBE5MUVBRClVRllhsmNDNCpoUtNRQZV5rwVCeUKC5Bciu0lglkPDXSpGyMVidu0UKd74PbQTjkLbj8aLShyiEMnzc2l5ksrWQ8U9JwIxkIwwYgo1rKTJRsYN2eWCa0MQZb_vEoyY875787sy-J4HIp |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.57041/v3jj9f69 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2958-3764 |
| EndPage | 7 |
| ExternalDocumentID | oai_doaj_org_article_787fe734897c4c73a5c3a7431b7785f3 10_57041_v3jj9f69 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E |
| ID | FETCH-LOGICAL-c1359-e512c2d15d59f198e4c35b3c576defbad849b046b210947a74e5bb72a846c7c63 |
| IEDL.DBID | DOA |
| ISSN | 2958-3764 |
| IngestDate | Tue Oct 14 19:03:13 EDT 2025 Sat Nov 29 06:22:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://creativecommons.org/licenses/by-sa/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1359-e512c2d15d59f198e4c35b3c576defbad849b046b210947a74e5bb72a846c7c63 |
| OpenAccessLink | https://doaj.org/article/787fe734897c4c73a5c3a7431b7785f3 |
| PageCount | 7 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_787fe734897c4c73a5c3a7431b7785f3 crossref_primary_10_57041_v3jj9f69 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-30 |
| PublicationDateYYYYMMDD | 2023-12-30 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | International Journal of Emerging Engineering and Technology |
| PublicationYear | 2023 |
| Publisher | Swedish College of Egineering and Technology |
| Publisher_xml | – name: Swedish College of Egineering and Technology |
| SSID | ssj0003313914 |
| Score | 2.2417073 |
| Snippet | This comprehensive research investigates using distributed and parallel computing for big data analytics in agriculture to improve farming operations'... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 1 |
| SubjectTerms | analytics Big data paralellization |
| Title | Enhancing Agricultural Operations: Big Data Analytics Using Distributed and Parallel Computing |
| URI | https://doaj.org/article/787fe734897c4c73a5c3a7431b7785f3 |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2958-3764 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003313914 issn: 2958-3764 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2958-3764 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003313914 issn: 2958-3764 databaseCode: M~E dateStart: 20220101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ09T8MwEIYtVDGwIBAgypcsxBrVjuM6ZmtpKxZKB5A6EfmztEKhSktHfjtnp1TZWFgyRI4Vvef47hTreRG608R6Zmk3EcyIJJOawiflSWIoVcQzA4-RaDYhxuN8OpWThtVXOBNW44Fr4TqwoLwLCBYpTGYEU9wwFdKeFiLnPnI-iZCNZirswYxBZUOzGiXEBcloZ8MWC-nDweZGAmpw-mNCGR2hw20liHv1GxyjPVeeoLdh-R4IGOUM92bVjouBn5euDtXqHvfnMzxQa4UjUCRglnH88Y8HAYIb_Kucxaq0eKKq4JTygWvrBhhyil5Hw5eHx2RrgQBiMS4TB_nYpJZyy6WnMneZYVwzA12CdV4rm4O80OJq6NxkJkAYx7UWqYKywgjTZWeoVX6W7hxhw1MraEocVKigplUUJAJlc8O8EcS20e2vLsWyJl0U0CFE8Ypf8dqoHxTbDQhw6ngDQlZsQ1b8FbKL_5jkEh0E5_fIXCRXqLWuvtw12jeb9XxV3cTVANen7-EPa2i72Q |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Agricultural+Operations%3A+Big+Data+Analytics+Using+Distributed+and+Parallel+Computing&rft.jtitle=International+Journal+of+Emerging+Engineering+and+Technology&rft.au=Fatima%2C+Syeda+Alishba&rft.au=Syeda+Faiza+Nasim&rft.au=Saad+Ahmed&rft.date=2023-12-30&rft.issn=2958-3764&rft.eissn=2958-3764&rft.volume=2&rft.issue=2&rft.spage=1&rft.epage=7&rft_id=info:doi/10.57041%2Fv3jj9f69&rft.externalDBID=n%2Fa&rft.externalDocID=10_57041_v3jj9f69 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2958-3764&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2958-3764&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2958-3764&client=summon |