Enhancing Agricultural Operations: Big Data Analytics Using Distributed and Parallel Computing

This comprehensive research investigates using distributed and parallel computing for big data analytics in agriculture to improve farming operations' sustainability, efficiency, and innovation. The paper emphasizes how big data analytics, cloud computing, and parallel distributed processing ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Emerging Engineering and Technology Jg. 2; H. 2; S. 1 - 7
Hauptverfasser: Fatima, Syeda Alishba, Syeda Faiza Nasim, Saad Ahmed
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Swedish College of Egineering and Technology 30.12.2023
Schlagworte:
ISSN:2958-3764, 2958-3764
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This comprehensive research investigates using distributed and parallel computing for big data analytics in agriculture to improve farming operations' sustainability, efficiency, and innovation. The paper emphasizes how big data analytics, cloud computing, and parallel distributed processing can revolutionize the agricultural industry. The research objectives include investigating the benefits and limitations of big data analytics in precision farming and crop monitoring, identifying the constraints of integrating big data analytics in agriculture and investigating the role of frameworks such as Hadoop and Spark in processing and analyzing agricultural data for informed decision-making and optimized farming operations. The methodology used in the paper is a literature review, which draws on various sources to provide insights into the topic matter. The findings indicate that big data analytics can considerably improve precision farming and crop monitoring; nevertheless, there are hurdles to incorporating big data analytics in agriculture, such as data privacy and security concerns. According to the study, frameworks such as Hadoop and Spark are crucial in processing and analyzing agricultural data for informed decision-making and better farming operations. Overall, this study offers useful insights into the possibilities of big data analytics and distributed and parallel computing in revolutionizing the agriculture industry.
AbstractList This comprehensive research investigates using distributed and parallel computing for big data analytics in agriculture to improve farming operations' sustainability, efficiency, and innovation. The paper emphasizes how big data analytics, cloud computing, and parallel distributed processing can revolutionize the agricultural industry. The research objectives include investigating the benefits and limitations of big data analytics in precision farming and crop monitoring, identifying the constraints of integrating big data analytics in agriculture and investigating the role of frameworks such as Hadoop and Spark in processing and analyzing agricultural data for informed decision-making and optimized farming operations. The methodology used in the paper is a literature review, which draws on various sources to provide insights into the topic matter. The findings indicate that big data analytics can considerably improve precision farming and crop monitoring; nevertheless, there are hurdles to incorporating big data analytics in agriculture, such as data privacy and security concerns. According to the study, frameworks such as Hadoop and Spark are crucial in processing and analyzing agricultural data for informed decision-making and better farming operations. Overall, this study offers useful insights into the possibilities of big data analytics and distributed and parallel computing in revolutionizing the agriculture industry.
Author Fatima, Syeda Alishba
Saad Ahmed
Syeda Faiza Nasim
Author_xml – sequence: 1
  givenname: Syeda Alishba
  surname: Fatima
  fullname: Fatima, Syeda Alishba
– sequence: 2
  surname: Syeda Faiza Nasim
  fullname: Syeda Faiza Nasim
– sequence: 3
  surname: Saad Ahmed
  fullname: Saad Ahmed
BookMark eNpNkDFPwzAUhC0EEqV04B94ZSjYsR3HbKUtUKlSGehK9Ow4wVHqVHaC1H9PaAEx3dPp7tPTXaFz33qL0A0ld0ISTu8_WV2rMlVnaJQokU2ZTPn5v_sSTWKsCSGMUaYoH6H3pf8Ab5yv8KwKzvRN1wdo8GZvA3Su9fEBP7oKL6ADPPPQHDpnIt7G78bCxS443Xe2wOAL_ApDtbENnre7fd8NkWt0UUIT7eRHx2j7tHybv0zXm-fVfLaeGsqEmlpBE5MUVBRClVRllhsmNDNCpoUtNRQZV5rwVCeUKC5Bciu0lglkPDXSpGyMVidu0UKd74PbQTjkLbj8aLShyiEMnzc2l5ksrWQ8U9JwIxkIwwYgo1rKTJRsYN2eWCa0MQZb_vEoyY875787sy-J4HIp
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.57041/v3jj9f69
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2958-3764
EndPage 7
ExternalDocumentID oai_doaj_org_article_787fe734897c4c73a5c3a7431b7785f3
10_57041_v3jj9f69
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c1359-e512c2d15d59f198e4c35b3c576defbad849b046b210947a74e5bb72a846c7c63
IEDL.DBID DOA
ISSN 2958-3764
IngestDate Tue Oct 14 19:03:13 EDT 2025
Sat Nov 29 06:22:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1359-e512c2d15d59f198e4c35b3c576defbad849b046b210947a74e5bb72a846c7c63
OpenAccessLink https://doaj.org/article/787fe734897c4c73a5c3a7431b7785f3
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_787fe734897c4c73a5c3a7431b7785f3
crossref_primary_10_57041_v3jj9f69
PublicationCentury 2000
PublicationDate 2023-12-30
PublicationDateYYYYMMDD 2023-12-30
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-30
  day: 30
PublicationDecade 2020
PublicationTitle International Journal of Emerging Engineering and Technology
PublicationYear 2023
Publisher Swedish College of Egineering and Technology
Publisher_xml – name: Swedish College of Egineering and Technology
SSID ssj0003313914
Score 2.2417073
Snippet This comprehensive research investigates using distributed and parallel computing for big data analytics in agriculture to improve farming operations'...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 1
SubjectTerms analytics
Big data
paralellization
Title Enhancing Agricultural Operations: Big Data Analytics Using Distributed and Parallel Computing
URI https://doaj.org/article/787fe734897c4c73a5c3a7431b7785f3
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2958-3764
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003313914
  issn: 2958-3764
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2958-3764
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003313914
  issn: 2958-3764
  databaseCode: M~E
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ09T8MwEIYtVDGwIBAgypcsxBrVjuM6ZmtpKxZKB5A6EfmztEKhSktHfjtnp1TZWFgyRI4Vvef47hTreRG608R6Zmk3EcyIJJOawiflSWIoVcQzA4-RaDYhxuN8OpWThtVXOBNW44Fr4TqwoLwLCBYpTGYEU9wwFdKeFiLnPnI-iZCNZirswYxBZUOzGiXEBcloZ8MWC-nDweZGAmpw-mNCGR2hw20liHv1GxyjPVeeoLdh-R4IGOUM92bVjouBn5euDtXqHvfnMzxQa4UjUCRglnH88Y8HAYIb_Kucxaq0eKKq4JTygWvrBhhyil5Hw5eHx2RrgQBiMS4TB_nYpJZyy6WnMneZYVwzA12CdV4rm4O80OJq6NxkJkAYx7UWqYKywgjTZWeoVX6W7hxhw1MraEocVKigplUUJAJlc8O8EcS20e2vLsWyJl0U0CFE8Ypf8dqoHxTbDQhw6ngDQlZsQ1b8FbKL_5jkEh0E5_fIXCRXqLWuvtw12jeb9XxV3cTVANen7-EPa2i72Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Agricultural+Operations%3A+Big+Data+Analytics+Using+Distributed+and+Parallel+Computing&rft.jtitle=International+Journal+of+Emerging+Engineering+and+Technology&rft.au=Fatima%2C+Syeda+Alishba&rft.au=Syeda+Faiza+Nasim&rft.au=Saad+Ahmed&rft.date=2023-12-30&rft.issn=2958-3764&rft.eissn=2958-3764&rft.volume=2&rft.issue=2&rft.spage=1&rft.epage=7&rft_id=info:doi/10.57041%2Fv3jj9f69&rft.externalDBID=n%2Fa&rft.externalDocID=10_57041_v3jj9f69
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2958-3764&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2958-3764&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2958-3764&client=summon