Channel Estimation With Iterative Hard Thresholding in mMTC Communications

In the context of Internet of Things (IoT) applications, the field of massive Machine-Type Communications (mMTC) has experienced rapid development, but still faces specific challenges such as low latency and high reliability for massive device connectivity and channel estimation (CE). We propose two...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on vehicular technology s. 1 - 6
Hlavní autori: Zhang, Xiaoxu, Meng, Yuchao, Karagiannidis, George K., Ma, Zheng, Liu, Gang, Yang, Boran
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 2025
Predmet:
ISSN:0018-9545, 1939-9359
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In the context of Internet of Things (IoT) applications, the field of massive Machine-Type Communications (mMTC) has experienced rapid development, but still faces specific challenges such as low latency and high reliability for massive device connectivity and channel estimation (CE). We propose two Iterative Hard Thresholding algorithms for channel estimation in Grant-Free Non-Orthogonal Multiple Access (GF-NOMA) systems, including Normalized Iterative Hard Thresholding (NIHT) and Fast Iterative Hard Thresholding (FIHT) method. As a sparse gradient descent algorithm, NIHT provides good performance in CE, but its slow convergence limits efficiency. By introducing momentum iteration and acceleration step strategies, FIHT significantly enhances convergence speed and reduces computational complexity. Through simulation testing, FIHT demonstrates superior performance in complex environments, outperforming existing algorithms in both efficiency and effectiveness.
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2025.3633486