Channel Estimation With Iterative Hard Thresholding in mMTC Communications
In the context of Internet of Things (IoT) applications, the field of massive Machine-Type Communications (mMTC) has experienced rapid development, but still faces specific challenges such as low latency and high reliability for massive device connectivity and channel estimation (CE). We propose two...
Uložené v:
| Vydané v: | IEEE transactions on vehicular technology s. 1 - 6 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
2025
|
| Predmet: | |
| ISSN: | 0018-9545, 1939-9359 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In the context of Internet of Things (IoT) applications, the field of massive Machine-Type Communications (mMTC) has experienced rapid development, but still faces specific challenges such as low latency and high reliability for massive device connectivity and channel estimation (CE). We propose two Iterative Hard Thresholding algorithms for channel estimation in Grant-Free Non-Orthogonal Multiple Access (GF-NOMA) systems, including Normalized Iterative Hard Thresholding (NIHT) and Fast Iterative Hard Thresholding (FIHT) method. As a sparse gradient descent algorithm, NIHT provides good performance in CE, but its slow convergence limits efficiency. By introducing momentum iteration and acceleration step strategies, FIHT significantly enhances convergence speed and reduces computational complexity. Through simulation testing, FIHT demonstrates superior performance in complex environments, outperforming existing algorithms in both efficiency and effectiveness. |
|---|---|
| ISSN: | 0018-9545 1939-9359 |
| DOI: | 10.1109/TVT.2025.3633486 |