GREAT: Grassmannian Recursive Algorithm for Tracking & Online System Identification

This paper introduces an online approach for identifying time-varying subspaces defined by linear dynamical systems. The approach of representing linear systems by non-parametric subspace models has received significant interest in the field of data-driven control recently. This system representatio...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control pp. 1 - 16
Main Authors: Sasfi, Andras, Padoan, Alberto, Markovsky, Ivan, Dorfler, Florian
Format: Journal Article
Language:English
Published: IEEE 2025
Subjects:
ISSN:0018-9286, 1558-2523
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper introduces an online approach for identifying time-varying subspaces defined by linear dynamical systems. The approach of representing linear systems by non-parametric subspace models has received significant interest in the field of data-driven control recently. This system representation enables us to provide rigorous guarantees for linear time-varying systems, which are difficult to obtain for parametric system models. The proposed method leverages optimization on the Grassmann manifold leading to the Grassmannian Recursive Algorithm for Tracking (GREAT). We view subspaces as points on the Grassmann manifold and adapt the estimate based on online data by performing optimization on the manifold. At each time step, a single measurement from the current subspace corrupted by a bounded error is available. The subspace estimate is updated online using Grassmannian gradient descent on a cost function incorporating a window of the most recent data. Under suitable assumptions on the signal-to-noise ratio of the online data and the subspace's rate of change, we establish theoretical guarantees for the resulting algorithm. More specifically, we prove an exponential convergence rate and provide an uncertainty quantification of the estimates in terms of an upper bound on their distance to the true subspace. The applicability of the proposed algorithm is demonstrated by means of numerical examples.
AbstractList This paper introduces an online approach for identifying time-varying subspaces defined by linear dynamical systems. The approach of representing linear systems by non-parametric subspace models has received significant interest in the field of data-driven control recently. This system representation enables us to provide rigorous guarantees for linear time-varying systems, which are difficult to obtain for parametric system models. The proposed method leverages optimization on the Grassmann manifold leading to the Grassmannian Recursive Algorithm for Tracking (GREAT). We view subspaces as points on the Grassmann manifold and adapt the estimate based on online data by performing optimization on the manifold. At each time step, a single measurement from the current subspace corrupted by a bounded error is available. The subspace estimate is updated online using Grassmannian gradient descent on a cost function incorporating a window of the most recent data. Under suitable assumptions on the signal-to-noise ratio of the online data and the subspace's rate of change, we establish theoretical guarantees for the resulting algorithm. More specifically, we prove an exponential convergence rate and provide an uncertainty quantification of the estimates in terms of an upper bound on their distance to the true subspace. The applicability of the proposed algorithm is demonstrated by means of numerical examples.
Author Padoan, Alberto
Dorfler, Florian
Sasfi, Andras
Markovsky, Ivan
Author_xml – sequence: 1
  givenname: Andras
  orcidid: 0009-0007-0465-8036
  surname: Sasfi
  fullname: Sasfi, Andras
  email: asasfi@control.ee.ethz.ch
  organization: Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
– sequence: 2
  givenname: Alberto
  orcidid: 0000-0003-1597-0395
  surname: Padoan
  fullname: Padoan, Alberto
  email: apadoan@ece.ubc.ca
  organization: Department of Electrical & Computer Engineering, University of British Columbia, Vancouver, Canada
– sequence: 3
  givenname: Ivan
  orcidid: 0000-0001-9976-9685
  surname: Markovsky
  fullname: Markovsky, Ivan
  email: ivan.markovsky@cimne.upc.edu
  organization: Catalan Institution for Research and Advanced Studies, Barcelona, Spain
– sequence: 4
  givenname: Florian
  orcidid: 0000-0002-9649-5305
  surname: Dorfler
  fullname: Dorfler, Florian
  email: doerfler@control.ee.ethz.ch
  organization: Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
BookMark eNpFkM9rwjAcxcNwMHW777BDTrvV5Web7FbEOUEQtDuXmH7jstl0JN3A_15FYafHg_d5h88IDUIXAKFHSiaUEv1SldMJI0xOeM5zrfIbNKRSqoxJxgdoSAhVmWYqv0OjlL5ONReCDtFmvp6V1SueR5NSa0LwJuA12N-Y_B_gcr_rou8_W-y6iKto7LcPO_yMV2HvA-DNIfXQ4kUDoffOW9P7LtyjW2f2CR6uOUYfb7Nq-p4tV_PFtFxmlnLRZ1DQrTCaMiMJY41w4DizmoIzVinpqN5utSJFIwoGuRSNorzQ1mkBQkFj-RiRy6-NXUoRXP0TfWvioaakPkupT1Lqs5T6KuWEPF0QDwD_c8ryghWMHwG1Jl-0
CODEN IETAA9
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TAC.2025.3636986
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 16
ExternalDocumentID 10_1109_TAC_2025_3636986
11267272
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
AAWTH
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
~02
3EH
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
VH1
VJK
ID FETCH-LOGICAL-c134t-e71b4a912a5022d4fef32c91efac885f19bb9807d472e654d81379cf94e48edc3
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Thu Nov 27 00:58:05 EST 2025
Wed Dec 10 09:48:56 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c134t-e71b4a912a5022d4fef32c91efac885f19bb9807d472e654d81379cf94e48edc3
ORCID 0000-0002-9649-5305
0000-0001-9976-9685
0000-0003-1597-0395
0009-0007-0465-8036
PageCount 16
ParticipantIDs crossref_primary_10_1109_TAC_2025_3636986
ieee_primary_11267272
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0016441
Score 2.4687645
Snippet This paper introduces an online approach for identifying time-varying subspaces defined by linear dynamical systems. The approach of representing linear...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Behavioral systems
Convergence
Dynamical systems
Linear systems
manifold optimization
Manifolds
Measurement
Prediction algorithms
Signal processing algorithms
subspace methods
System identification
Time-varying systems
Vectors
Title GREAT: Grassmannian Recursive Algorithm for Tracking & Online System Identification
URI https://ieeexplore.ieee.org/document/11267272
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxQADn0WUL3lASAxpY8dJbLaoomVAFSpF6hYl9hkq0RSFlN-PHYfShYEtimIpepf47t753SF0nTPz0VLJPOAUPBOBKy_PhfaIopnQvgxDXbfMf4zHYz6biadGrF5rYQCgPnwGPXtZ1_LVUq4sVda3chdbOGyhVhxHTqy1LhlYx-62XfMHU76uSfqiP00GJhOkYS-IgkhY2fSGD9oYqlL7lOH-P9_mAO01wSNOnLUP0RYUR2h3o6XgMXoeTe6T6R0elSYqXtiBRFmBJ5ZUt-fUcfL-uizn1dsCm2AVG0clLVWOb7BrOYpdA3Ps5Lu64fM66GV4Px08eM3gBE-SgFUexCRnmSA0C42LVkyDNvYQBHQmOQ81EcYe3I8ViylEIVOcBLGQWjBgHJQMTlC7WBZwirCmTAommCKasyBTnOoATApHSKZCKUQX3f5AmX64_hhpnVf4IjWwpxb2tIG9izoWxd_nGgDP_rh_jnbsckd4XKB2Va7gEm3Lr2r-WV7V1v8GMTatCA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46BfXB68R5zYMIPnRr0nRNfCtjF3EOmRX2VtpcdOA6qZ2_36Spcy8--FZKKeU7Sb9zyXcOANcp0YsWc-JIiqWjPXDhpClTDhI4Ycrlvq_KlvnDYDSikwl7qsTqpRZGSlkePpNNc1nW8sWcL0yqrGXkLqZwuA42fEKwa-Vay6KBoXb749V7GNNlVdJlrSjs6FgQ-02v7bWZEU6vsNDKWJWSVXp7__yefbBbuY8wtPY-AGsyOwQ7K00Fj8Bzf9wNozvYz7VfPDMjiZIMjk1a3ZxUh-H76zyfFm8zqN1VqKmKm2Q5vIG26Si0LcyhFfCqKqNXBy-9btQZONXoBIcjjxSODFBKEoZw4muSFkRJpS3CkFQJp9RXiGmLUDcQJMCy7RNBkRcwrhiRhErBvWNQy-aZPAFQYcIZYUQgRYmXCIqVJ3UQh1AifM5YA9z-QBl_2A4ZcRlZuCzWsMcG9riCvQHqBsXf5yoAT_-4fwW2BtHjMB7ejx7OwLZ5lU1_nINakS_kBdjkX8X0M78sV8I3YoWwTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GREAT%3A+Grassmannian+Recursive+Algorithm+for+Tracking+%26+Online+System+Identification&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Sasfi%2C+Andras&rft.au=Padoan%2C+Alberto&rft.au=Markovsky%2C+Ivan&rft.au=Dorfler%2C+Florian&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9286&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTAC.2025.3636986&rft.externalDocID=11267272
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon