GREAT: Grassmannian Recursive Algorithm for Tracking & Online System Identification
This paper introduces an online approach for identifying time-varying subspaces defined by linear dynamical systems. The approach of representing linear systems by non-parametric subspace models has received significant interest in the field of data-driven control recently. This system representatio...
Saved in:
| Published in: | IEEE transactions on automatic control pp. 1 - 16 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
2025
|
| Subjects: | |
| ISSN: | 0018-9286, 1558-2523 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper introduces an online approach for identifying time-varying subspaces defined by linear dynamical systems. The approach of representing linear systems by non-parametric subspace models has received significant interest in the field of data-driven control recently. This system representation enables us to provide rigorous guarantees for linear time-varying systems, which are difficult to obtain for parametric system models. The proposed method leverages optimization on the Grassmann manifold leading to the Grassmannian Recursive Algorithm for Tracking (GREAT). We view subspaces as points on the Grassmann manifold and adapt the estimate based on online data by performing optimization on the manifold. At each time step, a single measurement from the current subspace corrupted by a bounded error is available. The subspace estimate is updated online using Grassmannian gradient descent on a cost function incorporating a window of the most recent data. Under suitable assumptions on the signal-to-noise ratio of the online data and the subspace's rate of change, we establish theoretical guarantees for the resulting algorithm. More specifically, we prove an exponential convergence rate and provide an uncertainty quantification of the estimates in terms of an upper bound on their distance to the true subspace. The applicability of the proposed algorithm is demonstrated by means of numerical examples. |
|---|---|
| AbstractList | This paper introduces an online approach for identifying time-varying subspaces defined by linear dynamical systems. The approach of representing linear systems by non-parametric subspace models has received significant interest in the field of data-driven control recently. This system representation enables us to provide rigorous guarantees for linear time-varying systems, which are difficult to obtain for parametric system models. The proposed method leverages optimization on the Grassmann manifold leading to the Grassmannian Recursive Algorithm for Tracking (GREAT). We view subspaces as points on the Grassmann manifold and adapt the estimate based on online data by performing optimization on the manifold. At each time step, a single measurement from the current subspace corrupted by a bounded error is available. The subspace estimate is updated online using Grassmannian gradient descent on a cost function incorporating a window of the most recent data. Under suitable assumptions on the signal-to-noise ratio of the online data and the subspace's rate of change, we establish theoretical guarantees for the resulting algorithm. More specifically, we prove an exponential convergence rate and provide an uncertainty quantification of the estimates in terms of an upper bound on their distance to the true subspace. The applicability of the proposed algorithm is demonstrated by means of numerical examples. |
| Author | Padoan, Alberto Dorfler, Florian Sasfi, Andras Markovsky, Ivan |
| Author_xml | – sequence: 1 givenname: Andras orcidid: 0009-0007-0465-8036 surname: Sasfi fullname: Sasfi, Andras email: asasfi@control.ee.ethz.ch organization: Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland – sequence: 2 givenname: Alberto orcidid: 0000-0003-1597-0395 surname: Padoan fullname: Padoan, Alberto email: apadoan@ece.ubc.ca organization: Department of Electrical & Computer Engineering, University of British Columbia, Vancouver, Canada – sequence: 3 givenname: Ivan orcidid: 0000-0001-9976-9685 surname: Markovsky fullname: Markovsky, Ivan email: ivan.markovsky@cimne.upc.edu organization: Catalan Institution for Research and Advanced Studies, Barcelona, Spain – sequence: 4 givenname: Florian orcidid: 0000-0002-9649-5305 surname: Dorfler fullname: Dorfler, Florian email: doerfler@control.ee.ethz.ch organization: Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland |
| BookMark | eNpFkM9rwjAcxcNwMHW777BDTrvV5Web7FbEOUEQtDuXmH7jstl0JN3A_15FYafHg_d5h88IDUIXAKFHSiaUEv1SldMJI0xOeM5zrfIbNKRSqoxJxgdoSAhVmWYqv0OjlL5ONReCDtFmvp6V1SueR5NSa0LwJuA12N-Y_B_gcr_rou8_W-y6iKto7LcPO_yMV2HvA-DNIfXQ4kUDoffOW9P7LtyjW2f2CR6uOUYfb7Nq-p4tV_PFtFxmlnLRZ1DQrTCaMiMJY41w4DizmoIzVinpqN5utSJFIwoGuRSNorzQ1mkBQkFj-RiRy6-NXUoRXP0TfWvioaakPkupT1Lqs5T6KuWEPF0QDwD_c8ryghWMHwG1Jl-0 |
| CODEN | IETAA9 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TAC.2025.3636986 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2523 |
| EndPage | 16 |
| ExternalDocumentID | 10_1109_TAC_2025_3636986 11267272 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ AAWTH ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 ~02 3EH 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFJZH VH1 VJK |
| ID | FETCH-LOGICAL-c134t-e71b4a912a5022d4fef32c91efac885f19bb9807d472e654d81379cf94e48edc3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9286 |
| IngestDate | Thu Nov 27 00:58:05 EST 2025 Wed Dec 10 09:48:56 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c134t-e71b4a912a5022d4fef32c91efac885f19bb9807d472e654d81379cf94e48edc3 |
| ORCID | 0000-0002-9649-5305 0000-0001-9976-9685 0000-0003-1597-0395 0009-0007-0465-8036 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_TAC_2025_3636986 ieee_primary_11267272 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on automatic control |
| PublicationTitleAbbrev | TAC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0016441 |
| Score | 2.4687645 |
| Snippet | This paper introduces an online approach for identifying time-varying subspaces defined by linear dynamical systems. The approach of representing linear... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Behavioral systems Convergence Dynamical systems Linear systems manifold optimization Manifolds Measurement Prediction algorithms Signal processing algorithms subspace methods System identification Time-varying systems Vectors |
| Title | GREAT: Grassmannian Recursive Algorithm for Tracking & Online System Identification |
| URI | https://ieeexplore.ieee.org/document/11267272 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-2523 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016441 issn: 0018-9286 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxQADn0WUL3lASAxpY8dJbLaoomVAFSpF6hYl9hkq0RSFlN-PHYfShYEtimIpepf47t753SF0nTPz0VLJPOAUPBOBKy_PhfaIopnQvgxDXbfMf4zHYz6biadGrF5rYQCgPnwGPXtZ1_LVUq4sVda3chdbOGyhVhxHTqy1LhlYx-62XfMHU76uSfqiP00GJhOkYS-IgkhY2fSGD9oYqlL7lOH-P9_mAO01wSNOnLUP0RYUR2h3o6XgMXoeTe6T6R0elSYqXtiBRFmBJ5ZUt-fUcfL-uizn1dsCm2AVG0clLVWOb7BrOYpdA3Ps5Lu64fM66GV4Px08eM3gBE-SgFUexCRnmSA0C42LVkyDNvYQBHQmOQ81EcYe3I8ViylEIVOcBLGQWjBgHJQMTlC7WBZwirCmTAommCKasyBTnOoATApHSKZCKUQX3f5AmX64_hhpnVf4IjWwpxb2tIG9izoWxd_nGgDP_rh_jnbsckd4XKB2Va7gEm3Lr2r-WV7V1v8GMTatCA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46BfXB68R5zYMIPnRr0nRNfCtjF3EOmRX2VtpcdOA6qZ2_36Spcy8--FZKKeU7Sb9zyXcOANcp0YsWc-JIiqWjPXDhpClTDhI4Ycrlvq_KlvnDYDSikwl7qsTqpRZGSlkePpNNc1nW8sWcL0yqrGXkLqZwuA42fEKwa-Vay6KBoXb749V7GNNlVdJlrSjs6FgQ-02v7bWZEU6vsNDKWJWSVXp7__yefbBbuY8wtPY-AGsyOwQ7K00Fj8Bzf9wNozvYz7VfPDMjiZIMjk1a3ZxUh-H76zyfFm8zqN1VqKmKm2Q5vIG26Si0LcyhFfCqKqNXBy-9btQZONXoBIcjjxSODFBKEoZw4muSFkRJpS3CkFQJp9RXiGmLUDcQJMCy7RNBkRcwrhiRhErBvWNQy-aZPAFQYcIZYUQgRYmXCIqVJ3UQh1AifM5YA9z-QBl_2A4ZcRlZuCzWsMcG9riCvQHqBsXf5yoAT_-4fwW2BtHjMB7ejx7OwLZ5lU1_nINakS_kBdjkX8X0M78sV8I3YoWwTw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GREAT%3A+Grassmannian+Recursive+Algorithm+for+Tracking+%26+Online+System+Identification&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Sasfi%2C+Andras&rft.au=Padoan%2C+Alberto&rft.au=Markovsky%2C+Ivan&rft.au=Dorfler%2C+Florian&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9286&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTAC.2025.3636986&rft.externalDocID=11267272 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |