Construction and Fast Decoding of Binary Linear Sum-Rank-Metric Codes

Sum-rank-metric codes have wide applications in multishot network coding and distributed storage. Linearized Reed-Solomon codes, sum-rank BCH codes and their Welch-Berlekamp decoding algorithms have been proposed and studied. In this paper, we construct binary linear sum-rank-metric codes in <inl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory Jg. 71; H. 12; S. 9319 - 9329
Hauptverfasser: Chen, Hao, Cheng, Zhiqiang, Qi, Yanfeng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.12.2025
Schlagworte:
ISSN:0018-9448, 1557-9654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Sum-rank-metric codes have wide applications in multishot network coding and distributed storage. Linearized Reed-Solomon codes, sum-rank BCH codes and their Welch-Berlekamp decoding algorithms have been proposed and studied. In this paper, we construct binary linear sum-rank-metric codes in <inline-formula> <tex-math notation="LaTeX">{\mathbf { F}}_{2}^{2 \times 2}\oplus {\mathbf { F}}_{2}^{2 \times 2} \oplus \cdots \oplus {\mathbf { F}}_{2}^{2 \times 2} </tex-math></inline-formula> from BCH, Goppa and additive quaternary codes. A reduction of decoding of binary sum-rank-metric codes to decoding of Hamming metric codes is given. Fast decoding algorithms of BCH-type and Goppa-type binary linear sum-rank-metric codes in <inline-formula> <tex-math notation="LaTeX">{\mathbf { F}}_{2}^{2 \times 2}\oplus {\mathbf { F}}_{2}^{2 \times 2} \oplus \cdots \oplus {\mathbf { F}}_{2}^{2 \times 2} </tex-math></inline-formula> with the block length <inline-formula> <tex-math notation="LaTeX">\ell </tex-math></inline-formula>, which are better than these sum-rank BCH codes, are presented. These fast decoding algorithms for BCH-type and Goppa-type binary linear sum-rank-metric codes need at most <inline-formula> <tex-math notation="LaTeX">O(\ell ^{2}) </tex-math></inline-formula> operations in the field <inline-formula> <tex-math notation="LaTeX">{\mathbf { F}}_{4} </tex-math></inline-formula>. Asymptotically good sequences of quadratic-time encodable and decodable binary linear sum-rank-metric codes with the matrix size <inline-formula> <tex-math notation="LaTeX">\times 2 </tex-math></inline-formula> are constructed from Goppa codes.
AbstractList Sum-rank-metric codes have wide applications in multishot network coding and distributed storage. Linearized Reed-Solomon codes, sum-rank BCH codes and their Welch-Berlekamp decoding algorithms have been proposed and studied. In this paper, we construct binary linear sum-rank-metric codes in <inline-formula> <tex-math notation="LaTeX">{\mathbf { F}}_{2}^{2 \times 2}\oplus {\mathbf { F}}_{2}^{2 \times 2} \oplus \cdots \oplus {\mathbf { F}}_{2}^{2 \times 2} </tex-math></inline-formula> from BCH, Goppa and additive quaternary codes. A reduction of decoding of binary sum-rank-metric codes to decoding of Hamming metric codes is given. Fast decoding algorithms of BCH-type and Goppa-type binary linear sum-rank-metric codes in <inline-formula> <tex-math notation="LaTeX">{\mathbf { F}}_{2}^{2 \times 2}\oplus {\mathbf { F}}_{2}^{2 \times 2} \oplus \cdots \oplus {\mathbf { F}}_{2}^{2 \times 2} </tex-math></inline-formula> with the block length <inline-formula> <tex-math notation="LaTeX">\ell </tex-math></inline-formula>, which are better than these sum-rank BCH codes, are presented. These fast decoding algorithms for BCH-type and Goppa-type binary linear sum-rank-metric codes need at most <inline-formula> <tex-math notation="LaTeX">O(\ell ^{2}) </tex-math></inline-formula> operations in the field <inline-formula> <tex-math notation="LaTeX">{\mathbf { F}}_{4} </tex-math></inline-formula>. Asymptotically good sequences of quadratic-time encodable and decodable binary linear sum-rank-metric codes with the matrix size <inline-formula> <tex-math notation="LaTeX">\times 2 </tex-math></inline-formula> are constructed from Goppa codes.
Author Qi, Yanfeng
Chen, Hao
Cheng, Zhiqiang
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0000-0002-4558-8982
  surname: Chen
  fullname: Chen, Hao
  email: haochen@jnu.edu.cn
  organization: College of Information Science and Technology, Jinan University, Guangzhou, Guangdong, China
– sequence: 2
  givenname: Zhiqiang
  surname: Cheng
  fullname: Cheng, Zhiqiang
  email: 2712468769@qq.com
  organization: College of Modern Economics and Management, Jiangxi University of Finance and Economics, Jiujiang, China
– sequence: 3
  givenname: Yanfeng
  orcidid: 0000-0003-1381-5471
  surname: Qi
  fullname: Qi, Yanfeng
  email: qiyanfeng07@163.com
  organization: School of Science, Hangzhou Dianzi University, Hangzhou, China
BookMark eNpFkEFLwzAcxYNMsJvePXjIF0hN0n_S5qh108FE0HkuaZJK1CWSdAe_vR0beHo8eO_x-M3RLMTgELpmtGSMqtvteltyykVZSaZEzc9QwYSoiZICZqiglDVEATQXaJ7z52RBMF6gZRtDHtPejD4GrIPFK51H_OBMtD584Djgex90-sUbH5xO-G2_I686fJFnNyZvcButy5fofNDf2V2ddIHeV8tt-0Q2L4_r9m5DDKtgJMoOw2BozbU0vOlB9L0SAJTK3oEQWlZWK1NZsFZaDtRoa4H2hplGCsNUtUD0uGtSzDm5oftJfje96xjtDhi6CUN3wNCdMEyVm2PFO-f-44ypGhSv_gD4w1ro
CODEN IETTAW
Cites_doi 10.1109/18.771252
10.1109/TIT.2021.3088712
10.1016/j.jalgebra.2018.02.005
10.1109/TIT.2011.2146430
10.1016/j.laa.2022.02.012
10.1109/TIT.2021.3120016
10.1109/TIT.2019.2946635
10.1109/TIT.2023.3339808
10.1007/s40314-024-02915-z
10.1016/j.jcta.2022.105703
10.1007/s10623-024-01393-y
10.1002/jcd.21934
10.1007/s10623-020-00772-5
10.1109/TIT.2008.2011447
10.1561/0100000120
10.1007/978-3-031-29689-5_6
10.1016/s0924-6509(08)x7030-8
10.1007/978-3-642-58575-3
10.1109/SFCS.1998.743426
10.1016/j.ffa.2023.102272
10.1016/S0195-6698(03)00096-9
10.1109/ISIT57864.2024.10619220
10.1109/TIT.2024.3354513
10.1109/TIT.2022.3167629
10.1017/CBO9780511807077
10.1137/19M1253964
10.1109/TIT.2019.2924888
10.3934/amc.2017042
10.1016/S0019-9958(75)90090-X
10.1007/s10623-017-0354-4
10.1109/18.179340
10.1007/s10623-023-01214-8
10.1137/20M1386001
10.1109/TIT.2021.3129767
10.1016/j.ffa.2022.102013
10.1007/s10623-017-0346-4
10.1109/WINC.2010.5507933
10.1109/18.556668
10.1016/j.jalgebra.2022.06.027
10.1109/TIT.2021.3074190
10.1109/TIT.2023.3292162
10.1109/TIT.2019.2912165
10.1109/ISIT45174.2021.9517777
10.1109/TIT.2021.3067318
10.1109/TIT.2024.3366751
10.1109/TIT.2022.3156206
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIT.2025.3619572
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 9329
ExternalDocumentID 10_1109_TIT_2025_3619572
11197492
Genre orig-research
GrantInformation_xml – fundername: Major Program of Guangdong Basic and Applied Research
  grantid: 2019B030302008
– fundername: National Natural Science Foundation of China
  grantid: 62032009
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
ID FETCH-LOGICAL-c134t-9dfffc072a6c28b45bb9544006be455a63da9c3d4dd6d240cadd40bc1c865c193
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Thu Nov 27 00:52:11 EST 2025
Wed Dec 10 09:46:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c134t-9dfffc072a6c28b45bb9544006be455a63da9c3d4dd6d240cadd40bc1c865c193
ORCID 0000-0003-1381-5471
0000-0002-4558-8982
PageCount 11
ParticipantIDs ieee_primary_11197492
crossref_primary_10_1109_TIT_2025_3619572
PublicationCentury 2000
PublicationDate 2025-Dec.
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-Dec.
PublicationDecade 2020
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
ref17
ref16
ref19
ref51
ref50
ref46
Goppa (ref22) 1971; 7
ref45
Gabidulin (ref20) 1985; 21
ref48
ref47
ref42
ref41
ref44
ref43
ref49
Lao (ref30) 2024
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
Chen (ref18) 2023
Grassl (ref23) 2024
Goppa (ref21) 1970; 6
ref24
ref26
ref25
ref28
ref27
ref29
References_xml – ident: ref16
  doi: 10.1109/18.771252
– ident: ref37
  doi: 10.1109/TIT.2021.3088712
– ident: ref33
  doi: 10.1016/j.jalgebra.2018.02.005
– ident: ref7
  doi: 10.1109/TIT.2011.2146430
– ident: ref13
  doi: 10.1016/j.laa.2022.02.012
– ident: ref14
  doi: 10.1109/TIT.2021.3120016
– volume: 7
  start-page: 223
  issue: 3
  year: 1971
  ident: ref22
  article-title: Rational representation of codes and (L, g)-codes
  publication-title: Problems Inf. Transmiss.
– ident: ref8
  doi: 10.1109/TIT.2019.2946635
– ident: ref1
  doi: 10.1109/TIT.2023.3339808
– ident: ref42
  doi: 10.1007/s40314-024-02915-z
– ident: ref46
  doi: 10.1016/j.jcta.2022.105703
– ident: ref4
  doi: 10.1007/s10623-024-01393-y
– volume-title: Linear Sum-Rank-Metric Codes
  year: 2024
  ident: ref30
– ident: ref10
  doi: 10.1002/jcd.21934
– ident: ref34
  doi: 10.1007/s10623-020-00772-5
– volume: 6
  start-page: 207
  issue: 3
  year: 1970
  ident: ref21
  article-title: A new class of linear error-correcting codes
  publication-title: Problems Inf. Transmiss.
– ident: ref6
  doi: 10.1109/TIT.2008.2011447
– volume-title: Code Tables: Bounds on the Parameters of Various Types of Codes
  year: 2024
  ident: ref23
– ident: ref39
  doi: 10.1561/0100000120
– ident: ref28
  doi: 10.1007/978-3-031-29689-5_6
– ident: ref32
  doi: 10.1016/s0924-6509(08)x7030-8
– volume: 21
  start-page: 1
  issue: 1
  year: 1985
  ident: ref20
  article-title: Theory of codes with maximum rank distances
  publication-title: Problems Inf. Transmiss.
– ident: ref29
  doi: 10.1007/978-3-642-58575-3
– ident: ref24
  doi: 10.1109/SFCS.1998.743426
– ident: ref40
  doi: 10.1016/j.ffa.2023.102272
– ident: ref9
  doi: 10.1016/S0195-6698(03)00096-9
– ident: ref31
  doi: 10.1109/ISIT57864.2024.10619220
– ident: ref41
  doi: 10.1109/TIT.2024.3354513
– ident: ref48
  doi: 10.1109/TIT.2022.3167629
– ident: ref27
  doi: 10.1017/CBO9780511807077
– ident: ref11
  doi: 10.1137/19M1253964
– ident: ref36
  doi: 10.1109/TIT.2019.2924888
– ident: ref25
  doi: 10.3934/amc.2017042
– ident: ref52
  doi: 10.1016/S0019-9958(75)90090-X
– ident: ref44
  doi: 10.1007/s10623-017-0354-4
– ident: ref19
  doi: 10.1109/18.179340
– ident: ref26
  doi: 10.1007/s10623-023-01214-8
– ident: ref38
  doi: 10.1137/20M1386001
– ident: ref50
  doi: 10.1109/TIT.2021.3129767
– ident: ref2
  doi: 10.1016/j.ffa.2022.102013
– ident: ref43
  doi: 10.1007/s10623-017-0346-4
– ident: ref47
  doi: 10.1109/WINC.2010.5507933
– ident: ref51
  doi: 10.1109/18.556668
– ident: ref45
  doi: 10.1016/j.jalgebra.2022.06.027
– ident: ref12
  doi: 10.1109/TIT.2021.3074190
– ident: ref17
  doi: 10.1109/TIT.2023.3292162
– ident: ref35
  doi: 10.1109/TIT.2019.2912165
– ident: ref49
  doi: 10.1109/ISIT45174.2021.9517777
– year: 2023
  ident: ref18
  article-title: Covering codes, list-decodable codes and strong Singleton-like bounds in the sum-rank metric
  publication-title: arXiv:2311.07831
– ident: ref3
  doi: 10.1109/TIT.2021.3067318
– ident: ref5
  doi: 10.1109/TIT.2024.3366751
– ident: ref15
  doi: 10.1109/TIT.2022.3156206
SSID ssj0014512
Score 2.4939544
Snippet Sum-rank-metric codes have wide applications in multishot network coding and distributed storage. Linearized Reed-Solomon codes, sum-rank BCH codes and their...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 9319
SubjectTerms additive quaternary code
Additives
Codes
Decoding
decoding of sum-rank-metric code
Encoding
Geometry
Hamming distances
Hamming weight
Linear codes
Measurement
quadratic-time encodable and decodable sum-rank-metric codes
Reed-Solomon codes
Sum-rank BCH code
Welch-Berlekamp decoding algorithm
Title Construction and Fast Decoding of Binary Linear Sum-Rank-Metric Codes
URI https://ieeexplore.ieee.org/document/11197492
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBQimivOSBhcFtEj8Sj1CoQIIKQZG6RY5zkRAiQbTl93N2UigDA1sUxVL0xff4cr77CDmzhZvrBAkzIQRMqCJkyLOAJbxQYOPAWu4bhe_i8TiZTvVD06zue2EAwB8-g7679LX8vLIL96tsELqal9DocdfjWNXNWt8lAyHDejR4iBaMpGNZkwz0YHI7QSYYyT5HuiDj6FcMWhFV8TFl1P7n2-yQ7SZ5pBf1194la1B2SHspzEAbO-2QrZUpg3vk2olyLsfEUlPmdGRmc3qFxNMFLloV9NJ35VIkprjx6dPijT2a8pXdO7ktS4dVDrMueR5dT4Y3rFFPYDbkYs50XhSFDeLIKBslmZBZpqVAk1UZCCmN4rnRlufCaUphXLfo6USQ2dAmSlrM6_ZJq6xKOCBUQQToGqTNNAgdgEYOxXmuZK4N5gdxj5wv8Uzf6yEZqScXgU4R-9RhnzbY90jXQfnzXIPi4R_3j8imW16fIDkmLYQLTsiG_Zy_zD5O_Rb4Aohfrjw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kCurBaq1Yn3vw4mHbPHaT7FFrS4ttEY3QW0h2JyBiIrb19zubh9aDB28hhCV82Xl8mZ35CLlSqZnrBAGLbbAY91KbIc8CFripB8q3lHKLRuGJP5sF87l8qJrVi14YACgOn0HXXBa1fJ2rlflV1rNNzYtL9LibRjpLlu1a30UDLuxyOLiNNoy0o65KWrIXjkPkgo7oukgYhO_8ikJrsipFVBk2__k--2SvSh_pTfm9D8gGZC3SrKUZaGWpLbK7NmfwkAyMLGc9KJbGmabDeLGkd0g9TeiieUpvi75citQUtz59Wr2xxzh7ZVMjuKVoP9ewaJPn4SDsj1iln8CU7fIlkzpNU2X5TuwpJ0i4SBKJuKGdJcCFiD1Xx1K5mhtVKYzsCn0dtxJlq8ATCjO7I9LI8gyOCfXAAXQOQiUSuLRAIotyXe0JLWPMEPwOua7xjN7LMRlRQS8sGSH2kcE-qrDvkLaB8ue5CsWTP-5fku1ROJ1Ek_Hs_pTsmKXK8yRnpIHQwTnZUp_Ll8XHRbEdvgDaoLGL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+and+Fast+Decoding+of+Binary+Linear+Sum-Rank-Metric+Codes&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Chen%2C+Hao&rft.au=Cheng%2C+Zhiqiang&rft.au=Qi%2C+Yanfeng&rft.date=2025-12-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=71&rft.issue=12&rft.spage=9319&rft.epage=9329&rft_id=info:doi/10.1109%2FTIT.2025.3619572&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2025_3619572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon