Sequence Reconstruction under Channels with Multiple Bursts of Insertions or Deletions
The sequence reconstruction problem involves a model where a sequence is transmitted over several identical channels. This model investigates the minimum number of channels required for the unique reconstruction of the transmitted sequence. Levenshtein established that this number exceeds the maximu...
Uloženo v:
| Vydáno v: | IEEE transactions on information theory s. 1 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
2025
|
| Témata: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The sequence reconstruction problem involves a model where a sequence is transmitted over several identical channels. This model investigates the minimum number of channels required for the unique reconstruction of the transmitted sequence. Levenshtein established that this number exceeds the maximum size of the intersection between the error balls of any two distinct transmitted sequences by one. In this paper, we consider channels subject to multiple bursts of insertions and multiple bursts of deletions, respectively, where each burst has an exact length of value b . Our key findings are as follows: * Insertion Case: We investigate b -burst-insertion balls of radius t centered at q -ary sequences of length n . We establish that the size of an error ball is independent of its chosen center. Furthermore, we demonstrate that the intersection between error balls centered at two sequences differing only at their first position yields the largest intersection size, denoted by N q,b + ( n , t ). We also propose a reconstruction algorithm with linear runtime complexity, which processes N q,b + ( n , t )+1 distinct output sequences from the channel to recover the correct transmitted sequence. * Deletion Case: We examine b -burst-deletion balls of radius t centered at q -ary sequences of length n . In contrast to burst-insertion balls, we prove that the size of a burst-deletion ball is dependent on its chosen center. Particularly, we show that the b -burst-deletion ball centered at the b -cyclic sequence 0 b ⸰ 1 b ⸰ · · · ⸰ ( q − 1) b ⸰ 0 b · · · achieves the largest size. For binary alphabets, we then demonstrate that the intersection of b -burst-deletion balls centered at 0 b ⸰ 1 b ⸰ 0 b ⸰ 1 b · · · and 0 b −1 ⸰ 1 ⸰ 1 b ⸰ 0 b ⸰ 1 b · · · yields the largest size, denoted by N 2, b − ( n , t ). Moreover, we propose a reconstruction algorithm with linear runtime complexity, which processes N ≥ N 2, b − ( n , t )+1 distinct output sequences from the channel to reconstruct the correct transmitted sequence 1 . |
|---|---|
| AbstractList | The sequence reconstruction problem involves a model where a sequence is transmitted over several identical channels. This model investigates the minimum number of channels required for the unique reconstruction of the transmitted sequence. Levenshtein established that this number exceeds the maximum size of the intersection between the error balls of any two distinct transmitted sequences by one. In this paper, we consider channels subject to multiple bursts of insertions and multiple bursts of deletions, respectively, where each burst has an exact length of value b . Our key findings are as follows: * Insertion Case: We investigate b -burst-insertion balls of radius t centered at q -ary sequences of length n . We establish that the size of an error ball is independent of its chosen center. Furthermore, we demonstrate that the intersection between error balls centered at two sequences differing only at their first position yields the largest intersection size, denoted by N q,b + ( n , t ). We also propose a reconstruction algorithm with linear runtime complexity, which processes N q,b + ( n , t )+1 distinct output sequences from the channel to recover the correct transmitted sequence. * Deletion Case: We examine b -burst-deletion balls of radius t centered at q -ary sequences of length n . In contrast to burst-insertion balls, we prove that the size of a burst-deletion ball is dependent on its chosen center. Particularly, we show that the b -burst-deletion ball centered at the b -cyclic sequence 0 b ⸰ 1 b ⸰ · · · ⸰ ( q − 1) b ⸰ 0 b · · · achieves the largest size. For binary alphabets, we then demonstrate that the intersection of b -burst-deletion balls centered at 0 b ⸰ 1 b ⸰ 0 b ⸰ 1 b · · · and 0 b −1 ⸰ 1 ⸰ 1 b ⸰ 0 b ⸰ 1 b · · · yields the largest size, denoted by N 2, b − ( n , t ). Moreover, we propose a reconstruction algorithm with linear runtime complexity, which processes N ≥ N 2, b − ( n , t )+1 distinct output sequences from the channel to reconstruct the correct transmitted sequence 1 . |
| Author | Sun, Yubo Yu, Wenjun Ge, Gennian Lan, Zhaojun |
| Author_xml | – sequence: 1 givenname: Zhaojun surname: Lan fullname: Lan, Zhaojun email: 2200501014@cnu.edu.cn organization: School of Mathematical Sciences, Capital Normal University, Beijing, China – sequence: 2 givenname: Yubo orcidid: 0000-0002-2045-4603 surname: Sun fullname: Sun, Yubo email: 2200502135@cnu.edu.cn organization: School of Mathematical Sciences, Capital Normal University, Beijing, China – sequence: 3 givenname: Wenjun orcidid: 0000-0003-3808-2630 surname: Yu fullname: Yu, Wenjun email: wenjun@post.bgu.ac.il organization: School of Electrical and Computer Engineering, BenGurion University of the Negev, Beer Sheva, Israel – sequence: 4 givenname: Gennian orcidid: 0000-0002-1535-0754 surname: Ge fullname: Ge, Gennian email: gnge@zju.edu.cn organization: School of Mathematical Sciences, Capital Normal University, Beijing, China |
| BookMark | eNpFkE1Lw0AQQBepYFu9e_CwfyB1P5Pdo0arhYqg0WvYbGZpJG7qboL4701swdPwYN4wvAWa-c4DQpeUrCgl-rrYFCtGmFzxlHOl9QmaUymzRKdSzNCcEKoSLYQ6Q4sYP0YUkrI5en-FrwG8BfwCtvOxD4Ptm87jwdcQcL4z3kMb8XfT7_DT0PbNvgV8O4TYR9w5vPERwiSMFPAdtPAH5-jUmTbCxXEu0dv6vsgfk-3zwya_2SaWctEnOpOKSCFYBWkliGEGJLdaZgpS5ZySVgpDraoNrbNKsDoD4ax1o5cpZThfInK4a0MXYwBX7kPzacJPSUk5dSnHLuXUpTx2GZWrg9IAwP86ZXJ8ifBfdktiNg |
| CODEN | IETTAW |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TIT.2025.3633899 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9654 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TIT_2025_3633899 11251340 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: Grant 12231014 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ AAWTH ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 3EH 5VS AAYXX ABFSI AETEA AETIX AGSQL AI. AIBXA ALLEH CITATION E.L EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFJZH VH1 VJK |
| ID | FETCH-LOGICAL-c134t-975805442be6b40a2ae53c9578e68ff85c54a1c8da1d7b42d7e4fccf975788a33 |
| IEDL.DBID | RIE |
| ISSN | 0018-9448 |
| IngestDate | Thu Nov 27 00:40:59 EST 2025 Wed Nov 26 07:21:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c134t-975805442be6b40a2ae53c9578e68ff85c54a1c8da1d7b42d7e4fccf975788a33 |
| ORCID | 0000-0003-3808-2630 0000-0002-1535-0754 0000-0002-2045-4603 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_TIT_2025_3633899 ieee_primary_11251340 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0014512 |
| Score | 2.4847841 |
| Snippet | The sequence reconstruction problem involves a model where a sequence is transmitted over several identical channels. This model investigates the minimum... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | bursts of deletions bursts of insertions Closed-form solutions Complexity theory Decoding Focusing Germanium Racetrack memory Reconstruction algorithms Runtime Sequence reconstruction Symbols Transforms |
| Title | Sequence Reconstruction under Channels with Multiple Bursts of Insertions or Deletions |
| URI | https://ieeexplore.ieee.org/document/11251340 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BxQADhVJEeckDC0PaJHbieORV0YEKiYK6RbHjSCxJ1Qe_n7vEpWVgYEsiO7LubN19vrvvAG601CrW1NzFaIEARReeVkJ4RcYD7QeZVTqpm03I8TiZTtWrK1ava2GstXXyme3TYx3LzyuzoquyQUDWmAtE6LtSyqZY6ydkIKKgoQYP8AQj6FjHJH01mIwmiATDqM9jTnxyv2zQVlOV2qYM2_9czREcOueR3TXaPoYdW3agvW7MwNw57cDBFsvgCXy8uXRpRlhzwxjLqH5szqi-oEQLyehKlr24BEN2v0K_cMGqgo1KitjT9mTVnD1aouvGly68D58mD8-ea6fgGVzm0lMIDdBBE6G2sRZ-FmY24kbhkbVxUhRJZCKRBSbJsyCXWoS5tKIwplBEeZ9knJ9Cq6xKewZM-onGscRyzEWI_xW5jGKN3pow1I-9B7drAaezhjUjrdGGr1JURkrKSJ0yetAl2W7GObGe__H9AvZpenMNcgktFJq9gj3ztfxczK_rPfENUgu0yA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hggQMFEoR5emBhSFtHDsPj7yqVrQVEgF1i2LHkVgS1Ae_H1_i0jIwsMWRZVl3tu6-O993ADcylCKQ2NxFSW4AiswdKTh38pRR6dJUCxlVzSbCySSaTsWLLVavamG01tXjM93FzyqXn5VqiaGyHkVrzLhB6Ns-5x6ty7V-kgbcpzU5ODV32MCOVVbSFb14GBss6PldFjBklPtlhTbaqlRWpd_8534O4cC6j-Su1vcRbOmiBc1VawZib2oL9jd4Bo_h_dU-mCaINtecsQQryGYEKwwKYyMJBmXJ2D4xJPdL4xnOSZmTYYE5ezygpJyRR42E3WbQhrf-U_wwcGxDBUeZbS4cYcCBi5KTOpDcTb1U-0wJc2l1EOV55Cufp1RFWUqzUHIvCzXPlcoFkt5HKWMn0CjKQp8CCd1ImrnIc8y4Z9blWegH0vhrXGFH9g7crgScfNa8GUmFN1yRGGUkqIzEKqMDbZTtep4V69kf_69hdxCPR8loOHk-hz1cqg6KXEDDCFBfwo76WnzMZ1fV-fgG6NC4Dw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequence+Reconstruction+under+Channels+with+Multiple+Bursts+of+Insertions+or+Deletions&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Lan%2C+Zhaojun&rft.au=Sun%2C+Yubo&rft.au=Yu%2C+Wenjun&rft.au=Ge%2C+Gennian&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9448&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIT.2025.3633899&rft.externalDocID=11251340 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |