Sequence Reconstruction under Channels with Multiple Bursts of Insertions or Deletions

The sequence reconstruction problem involves a model where a sequence is transmitted over several identical channels. This model investigates the minimum number of channels required for the unique reconstruction of the transmitted sequence. Levenshtein established that this number exceeds the maximu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory s. 1
Hlavní autoři: Lan, Zhaojun, Sun, Yubo, Yu, Wenjun, Ge, Gennian
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 2025
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The sequence reconstruction problem involves a model where a sequence is transmitted over several identical channels. This model investigates the minimum number of channels required for the unique reconstruction of the transmitted sequence. Levenshtein established that this number exceeds the maximum size of the intersection between the error balls of any two distinct transmitted sequences by one. In this paper, we consider channels subject to multiple bursts of insertions and multiple bursts of deletions, respectively, where each burst has an exact length of value b . Our key findings are as follows: * Insertion Case: We investigate b -burst-insertion balls of radius t centered at q -ary sequences of length n . We establish that the size of an error ball is independent of its chosen center. Furthermore, we demonstrate that the intersection between error balls centered at two sequences differing only at their first position yields the largest intersection size, denoted by N q,b + ( n , t ). We also propose a reconstruction algorithm with linear runtime complexity, which processes N q,b + ( n , t )+1 distinct output sequences from the channel to recover the correct transmitted sequence. * Deletion Case: We examine b -burst-deletion balls of radius t centered at q -ary sequences of length n . In contrast to burst-insertion balls, we prove that the size of a burst-deletion ball is dependent on its chosen center. Particularly, we show that the b -burst-deletion ball centered at the b -cyclic sequence 0 b ⸰ 1 b ⸰ · · · ⸰ ( q − 1) b ⸰ 0 b · · · achieves the largest size. For binary alphabets, we then demonstrate that the intersection of b -burst-deletion balls centered at 0 b ⸰ 1 b ⸰ 0 b ⸰ 1 b · · · and 0 b −1 ⸰ 1 ⸰ 1 b ⸰ 0 b ⸰ 1 b · · · yields the largest size, denoted by N 2, b − ( n , t ). Moreover, we propose a reconstruction algorithm with linear runtime complexity, which processes N ≥ N 2, b − ( n , t )+1 distinct output sequences from the channel to reconstruct the correct transmitted sequence 1 .
AbstractList The sequence reconstruction problem involves a model where a sequence is transmitted over several identical channels. This model investigates the minimum number of channels required for the unique reconstruction of the transmitted sequence. Levenshtein established that this number exceeds the maximum size of the intersection between the error balls of any two distinct transmitted sequences by one. In this paper, we consider channels subject to multiple bursts of insertions and multiple bursts of deletions, respectively, where each burst has an exact length of value b . Our key findings are as follows: * Insertion Case: We investigate b -burst-insertion balls of radius t centered at q -ary sequences of length n . We establish that the size of an error ball is independent of its chosen center. Furthermore, we demonstrate that the intersection between error balls centered at two sequences differing only at their first position yields the largest intersection size, denoted by N q,b + ( n , t ). We also propose a reconstruction algorithm with linear runtime complexity, which processes N q,b + ( n , t )+1 distinct output sequences from the channel to recover the correct transmitted sequence. * Deletion Case: We examine b -burst-deletion balls of radius t centered at q -ary sequences of length n . In contrast to burst-insertion balls, we prove that the size of a burst-deletion ball is dependent on its chosen center. Particularly, we show that the b -burst-deletion ball centered at the b -cyclic sequence 0 b ⸰ 1 b ⸰ · · · ⸰ ( q − 1) b ⸰ 0 b · · · achieves the largest size. For binary alphabets, we then demonstrate that the intersection of b -burst-deletion balls centered at 0 b ⸰ 1 b ⸰ 0 b ⸰ 1 b · · · and 0 b −1 ⸰ 1 ⸰ 1 b ⸰ 0 b ⸰ 1 b · · · yields the largest size, denoted by N 2, b − ( n , t ). Moreover, we propose a reconstruction algorithm with linear runtime complexity, which processes N ≥ N 2, b − ( n , t )+1 distinct output sequences from the channel to reconstruct the correct transmitted sequence 1 .
Author Sun, Yubo
Yu, Wenjun
Ge, Gennian
Lan, Zhaojun
Author_xml – sequence: 1
  givenname: Zhaojun
  surname: Lan
  fullname: Lan, Zhaojun
  email: 2200501014@cnu.edu.cn
  organization: School of Mathematical Sciences, Capital Normal University, Beijing, China
– sequence: 2
  givenname: Yubo
  orcidid: 0000-0002-2045-4603
  surname: Sun
  fullname: Sun, Yubo
  email: 2200502135@cnu.edu.cn
  organization: School of Mathematical Sciences, Capital Normal University, Beijing, China
– sequence: 3
  givenname: Wenjun
  orcidid: 0000-0003-3808-2630
  surname: Yu
  fullname: Yu, Wenjun
  email: wenjun@post.bgu.ac.il
  organization: School of Electrical and Computer Engineering, BenGurion University of the Negev, Beer Sheva, Israel
– sequence: 4
  givenname: Gennian
  orcidid: 0000-0002-1535-0754
  surname: Ge
  fullname: Ge, Gennian
  email: gnge@zju.edu.cn
  organization: School of Mathematical Sciences, Capital Normal University, Beijing, China
BookMark eNpFkE1Lw0AQQBepYFu9e_CwfyB1P5Pdo0arhYqg0WvYbGZpJG7qboL4701swdPwYN4wvAWa-c4DQpeUrCgl-rrYFCtGmFzxlHOl9QmaUymzRKdSzNCcEKoSLYQ6Q4sYP0YUkrI5en-FrwG8BfwCtvOxD4Ptm87jwdcQcL4z3kMb8XfT7_DT0PbNvgV8O4TYR9w5vPERwiSMFPAdtPAH5-jUmTbCxXEu0dv6vsgfk-3zwya_2SaWctEnOpOKSCFYBWkliGEGJLdaZgpS5ZySVgpDraoNrbNKsDoD4ax1o5cpZThfInK4a0MXYwBX7kPzacJPSUk5dSnHLuXUpTx2GZWrg9IAwP86ZXJ8ifBfdktiNg
CODEN IETTAW
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIT.2025.3633899
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 1
ExternalDocumentID 10_1109_TIT_2025_3633899
11251340
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: Grant 12231014
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
AAWTH
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
3EH
5VS
AAYXX
ABFSI
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
VH1
VJK
ID FETCH-LOGICAL-c134t-975805442be6b40a2ae53c9578e68ff85c54a1c8da1d7b42d7e4fccf975788a33
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Thu Nov 27 00:40:59 EST 2025
Wed Nov 26 07:21:08 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c134t-975805442be6b40a2ae53c9578e68ff85c54a1c8da1d7b42d7e4fccf975788a33
ORCID 0000-0003-3808-2630
0000-0002-1535-0754
0000-0002-2045-4603
PageCount 1
ParticipantIDs crossref_primary_10_1109_TIT_2025_3633899
ieee_primary_11251340
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014512
Score 2.4847841
Snippet The sequence reconstruction problem involves a model where a sequence is transmitted over several identical channels. This model investigates the minimum...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms bursts of deletions
bursts of insertions
Closed-form solutions
Complexity theory
Decoding
Focusing
Germanium
Racetrack memory
Reconstruction algorithms
Runtime
Sequence reconstruction
Symbols
Transforms
Title Sequence Reconstruction under Channels with Multiple Bursts of Insertions or Deletions
URI https://ieeexplore.ieee.org/document/11251340
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BxQADhVJEeckDC0PaJHbieORV0YEKiYK6RbHjSCxJ1Qe_n7vEpWVgYEsiO7LubN19vrvvAG601CrW1NzFaIEARReeVkJ4RcYD7QeZVTqpm03I8TiZTtWrK1ava2GstXXyme3TYx3LzyuzoquyQUDWmAtE6LtSyqZY6ydkIKKgoQYP8AQj6FjHJH01mIwmiATDqM9jTnxyv2zQVlOV2qYM2_9czREcOueR3TXaPoYdW3agvW7MwNw57cDBFsvgCXy8uXRpRlhzwxjLqH5szqi-oEQLyehKlr24BEN2v0K_cMGqgo1KitjT9mTVnD1aouvGly68D58mD8-ea6fgGVzm0lMIDdBBE6G2sRZ-FmY24kbhkbVxUhRJZCKRBSbJsyCXWoS5tKIwplBEeZ9knJ9Cq6xKewZM-onGscRyzEWI_xW5jGKN3pow1I-9B7drAaezhjUjrdGGr1JURkrKSJ0yetAl2W7GObGe__H9AvZpenMNcgktFJq9gj3ztfxczK_rPfENUgu0yA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hggQMFEoR5emBhSFtHDsPj7yqVrQVEgF1i2LHkVgS1Ae_H1_i0jIwsMWRZVl3tu6-O993ADcylCKQ2NxFSW4AiswdKTh38pRR6dJUCxlVzSbCySSaTsWLLVavamG01tXjM93FzyqXn5VqiaGyHkVrzLhB6Ns-5x6ty7V-kgbcpzU5ODV32MCOVVbSFb14GBss6PldFjBklPtlhTbaqlRWpd_8534O4cC6j-Su1vcRbOmiBc1VawZib2oL9jd4Bo_h_dU-mCaINtecsQQryGYEKwwKYyMJBmXJ2D4xJPdL4xnOSZmTYYE5ezygpJyRR42E3WbQhrf-U_wwcGxDBUeZbS4cYcCBi5KTOpDcTb1U-0wJc2l1EOV55Cufp1RFWUqzUHIvCzXPlcoFkt5HKWMn0CjKQp8CCd1ImrnIc8y4Z9blWegH0vhrXGFH9g7crgScfNa8GUmFN1yRGGUkqIzEKqMDbZTtep4V69kf_69hdxCPR8loOHk-hz1cqg6KXEDDCFBfwo76WnzMZ1fV-fgG6NC4Dw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequence+Reconstruction+under+Channels+with+Multiple+Bursts+of+Insertions+or+Deletions&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Lan%2C+Zhaojun&rft.au=Sun%2C+Yubo&rft.au=Yu%2C+Wenjun&rft.au=Ge%2C+Gennian&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9448&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIT.2025.3633899&rft.externalDocID=11251340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon