Physical reservoir computing for optical stethoscope-based heart sound biometric identification

Heart sound signal has emerged as a promising solution to biometric identification. In this paper, we use an optical flow algorithm to retrieve optical stethoscope-based heart sound signals from a laser-camera system. We apply physical reservoir computing (RC) for the classification algorithm. As a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on artificial intelligence s. 1 - 14
Hlavní autori: Ding, Yuqi, Li, Haobo, Liang, Xiangpeng, Vaskeviciute, Marija, Faccio, Daniele, Heidari, Hadi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 2025
Predmet:
ISSN:2691-4581, 2691-4581
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Heart sound signal has emerged as a promising solution to biometric identification. In this paper, we use an optical flow algorithm to retrieve optical stethoscope-based heart sound signals from a laser-camera system. We apply physical reservoir computing (RC) for the classification algorithm. As a bio-inspired algorithm, physical RC has attracted growing research interests in recent years. We aim to create an efficient identification system by applying a recently proposed physical RC model called rotating neuron reservoir (RNR) as the processing core. Unlike conventional machine learning classifiers, RNR is a hardware-based neuromorphic model that preserves the majority of computing in the analogue domain, holding the promise of a next-generation machine learning accelerator. At the same time, the RNR, as a recurrent neural network (RNN), is suitable for time series data processing. The proposed system is verified by an experimentally collected heart sound dataset by laser-camera system achieving an overall accuracy of 89.03% in identifying twelve testing subjects. Additionally, the elevated heart sound from 8 subjects have been blended with their normal heart sounds to assess the robustness of the proposed system. The classification accuracy reaches over 83% in this mixed test. Furthermore, the identification system was assessed under individuals with different types of heart murmurs and abnormal heart sounds, achieving an overall accuracy of around 90%. The successful demonstration promises a novel application of physical RC for future biometric identification.
AbstractList Heart sound signal has emerged as a promising solution to biometric identification. In this paper, we use an optical flow algorithm to retrieve optical stethoscope-based heart sound signals from a laser-camera system. We apply physical reservoir computing (RC) for the classification algorithm. As a bio-inspired algorithm, physical RC has attracted growing research interests in recent years. We aim to create an efficient identification system by applying a recently proposed physical RC model called rotating neuron reservoir (RNR) as the processing core. Unlike conventional machine learning classifiers, RNR is a hardware-based neuromorphic model that preserves the majority of computing in the analogue domain, holding the promise of a next-generation machine learning accelerator. At the same time, the RNR, as a recurrent neural network (RNN), is suitable for time series data processing. The proposed system is verified by an experimentally collected heart sound dataset by laser-camera system achieving an overall accuracy of 89.03% in identifying twelve testing subjects. Additionally, the elevated heart sound from 8 subjects have been blended with their normal heart sounds to assess the robustness of the proposed system. The classification accuracy reaches over 83% in this mixed test. Furthermore, the identification system was assessed under individuals with different types of heart murmurs and abnormal heart sounds, achieving an overall accuracy of around 90%. The successful demonstration promises a novel application of physical RC for future biometric identification.
Author Heidari, Hadi
Liang, Xiangpeng
Faccio, Daniele
Li, Haobo
Ding, Yuqi
Vaskeviciute, Marija
Author_xml – sequence: 1
  givenname: Yuqi
  surname: Ding
  fullname: Ding, Yuqi
  email: y.ding.4@research.gla.ac.uk
  organization: James Watt School of Engineering, University of Glasgow, Glasgow, UK
– sequence: 2
  givenname: Haobo
  surname: Li
  fullname: Li, Haobo
  email: Haobo.Li@glasgow.ac.uk
  organization: School of Physics and Astronomy, University of Glasgow, Glasgow, UK
– sequence: 3
  givenname: Xiangpeng
  surname: Liang
  fullname: Liang, Xiangpeng
  email: xpliang@tsinghua.edu.cn
  organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
– sequence: 4
  givenname: Marija
  surname: Vaskeviciute
  fullname: Vaskeviciute, Marija
  email: m.vaskeviciute.1@research.gla.ac.uk
  organization: School of Physics and Astronomy, University of Glasgow, Glasgow, UK
– sequence: 5
  givenname: Daniele
  surname: Faccio
  fullname: Faccio, Daniele
  email: Daniele.Faccio@glasgow.ac.uk
  organization: School of Physics and Astronomy, University of Glasgow, Glasgow, UK
– sequence: 6
  givenname: Hadi
  surname: Heidari
  fullname: Heidari, Hadi
  email: Hadi.Heidari@glasgow.ac.uk
  organization: James Watt School of Engineering, University of Glasgow, Glasgow, UK
BookMark eNpNkE1LAzEQQINUsNbePXjIH9g6k-xH91iKH4WCHnoPSTqxkXazJFHov3drC3qagXlvDu-WjbrQEWP3CDNEaB83i9VMgKhmssZGzsUVG4u6xaKs5jj6t9-waUqfAAOKQohmzNT77pi81XseKVH8Dj5yGw79V_bdB3ch8tDn33vKlHch2dBTYXSiLd-Rjpmn8NVtufHhQDl6y_2Wuuzd4GQfujt27fQ-0fQyJ2zz_LRZvhbrt5fVcrEuLMoyF3OngcAY4wyCpFbUdVVLqoVpwJpKUmWNQHAOrC6FGACLhoDKyhkwrZwwOL-1MaQUyak--oOOR4WgTonUkEidEqlLokF5OCueiP5wxLapBMgf6KlnFQ
CODEN ITAICB
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TAI.2025.3617382
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2691-4581
EndPage 14
ExternalDocumentID 10_1109_TAI_2025_3617382
11197520
Genre orig-research
GroupedDBID 0R~
97E
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IEDLZ
IFIPE
JAVBF
M~E
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c134t-8fa0e0bbbfb103e9266563e62b70cb53e5cb210ff0ca422e92c1be0e45fb0b93
IEDL.DBID RIE
ISSN 2691-4581
IngestDate Sat Nov 29 07:16:10 EST 2025
Wed Oct 15 14:20:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/Crown.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c134t-8fa0e0bbbfb103e9266563e62b70cb53e5cb210ff0ca422e92c1be0e45fb0b93
PageCount 14
ParticipantIDs crossref_primary_10_1109_TAI_2025_3617382
ieee_primary_11197520
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on artificial intelligence
PublicationTitleAbbrev TAI
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002512227
Score 2.2784688
Snippet Heart sound signal has emerged as a promising solution to biometric identification. In this paper, we use an optical flow algorithm to retrieve optical...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Adaptive optics
Biomedical optical imaging
Biometric identification
Cameras
Classification algorithms
edge computing
Heart
Machine learning
neuromorphic processor
Optical reflection
optical stethoscope
rotating neuron reservoir
Speckle
Stethoscope
Title Physical reservoir computing for optical stethoscope-based heart sound biometric identification
URI https://ieeexplore.ieee.org/document/11197520
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2691-4581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512227
  issn: 2691-4581
  databaseCode: RIE
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2691-4581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512227
  issn: 2691-4581
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcBCeRRRHpUHFga3jvNwPCLUCiSoOlSoW2Q7Z9Glqdq0I78d23GhCwObZV2k6L5En-_O3x1CD1oYLbiQRAoOxBWGSC7zknDJuNQsMsYrvD_e-GSSz-diGsTqXgsDAP7yGQzc0tfyy0pvXapsGLmaV8pshN7iPGvEWj8JFUfUjPF9KZKK4ezp1QaALB3ElqZ9q70D6jmYpeKpZNz550ucodNwZsRPDcjn6AiWF6izn8eAw-95iYppcDp2mqL1rlqssfZWlp-wPZ3iauVT19hCW39WXpFCHI-V2A22rvHGDVnCXpLvOvfjRRkuE3n8umg2Hs2eX0gYoEB0FCc1yY2kQJVSRkU0BmHJOM1iyJjiVKs0hlQrG_IZQ7VMGLMGOlJAIUmNokrEV6i9rJZwjbCFOlUZ52Vmw6vEcOV6GDOwcOYSaCx66HHv2mLVtMkofHhBRWFhKBwMRYChh7rOq792waE3f-zfohP3eJP3uEPter2Fe3Ssd_Vis-6j1vvXqO8_hW-3j7W6
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQIMFC-SiifHpgYXDrOHEcjxWiakWpOlSoW2Q7tujSVGna34_tuNCFgc2yTlF0L9Hz3fndAfCsuFGccYEEZxq5whDKRFYgJggTikTGeIX355hNJtl8zqdBrO61MFprf_lMd93S1_KLUm1cqqwXuZoXJTZCP6JJQnAj1_pJqTiqJoTtipGY92b9kQ0BCe3Glqh9s7098tmbpuLJZND652ucg7NwaoT9BuYLcKCXl6C1m8gAww96BfJpcDt0qqJqWy4qqLyVZShoz6ewXPnkNbTg1l-l16Qgx2QFdKOta7h2Y5agF-W73v1wUYTrRB7BNpgN3mavQxRGKCAVxUmNMiOwxlJKIyMca27pmKaxTolkWEkaa6qkDfqMwUokhFgDFUmNdUKNxJLH1-BwWS71DYAWbCpTxorUBliJYdJ1MSbaApoJjWPeAS871-arplFG7gMMzHMLQ-5gyAMMHdB2Xv21Cw69_WP_CZwMZx_jfDyavN-BU_eoJgtyDw7raqMfwLHa1ot19eg_iG8GJLfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physical+reservoir+computing+for+optical+stethoscope-based+heart+sound+biometric+identification&rft.jtitle=IEEE+transactions+on+artificial+intelligence&rft.au=Ding%2C+Yuqi&rft.au=Li%2C+Haobo&rft.au=Liang%2C+Xiangpeng&rft.au=Vaskeviciute%2C+Marija&rft.date=2025&rft.issn=2691-4581&rft.eissn=2691-4581&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTAI.2025.3617382&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAI_2025_3617382
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-4581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-4581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-4581&client=summon