Physical reservoir computing for optical stethoscope-based heart sound biometric identification
Heart sound signal has emerged as a promising solution to biometric identification. In this paper, we use an optical flow algorithm to retrieve optical stethoscope-based heart sound signals from a laser-camera system. We apply physical reservoir computing (RC) for the classification algorithm. As a...
Uložené v:
| Vydané v: | IEEE transactions on artificial intelligence s. 1 - 14 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
2025
|
| Predmet: | |
| ISSN: | 2691-4581, 2691-4581 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Heart sound signal has emerged as a promising solution to biometric identification. In this paper, we use an optical flow algorithm to retrieve optical stethoscope-based heart sound signals from a laser-camera system. We apply physical reservoir computing (RC) for the classification algorithm. As a bio-inspired algorithm, physical RC has attracted growing research interests in recent years. We aim to create an efficient identification system by applying a recently proposed physical RC model called rotating neuron reservoir (RNR) as the processing core. Unlike conventional machine learning classifiers, RNR is a hardware-based neuromorphic model that preserves the majority of computing in the analogue domain, holding the promise of a next-generation machine learning accelerator. At the same time, the RNR, as a recurrent neural network (RNN), is suitable for time series data processing. The proposed system is verified by an experimentally collected heart sound dataset by laser-camera system achieving an overall accuracy of 89.03% in identifying twelve testing subjects. Additionally, the elevated heart sound from 8 subjects have been blended with their normal heart sounds to assess the robustness of the proposed system. The classification accuracy reaches over 83% in this mixed test. Furthermore, the identification system was assessed under individuals with different types of heart murmurs and abnormal heart sounds, achieving an overall accuracy of around 90%. The successful demonstration promises a novel application of physical RC for future biometric identification. |
|---|---|
| AbstractList | Heart sound signal has emerged as a promising solution to biometric identification. In this paper, we use an optical flow algorithm to retrieve optical stethoscope-based heart sound signals from a laser-camera system. We apply physical reservoir computing (RC) for the classification algorithm. As a bio-inspired algorithm, physical RC has attracted growing research interests in recent years. We aim to create an efficient identification system by applying a recently proposed physical RC model called rotating neuron reservoir (RNR) as the processing core. Unlike conventional machine learning classifiers, RNR is a hardware-based neuromorphic model that preserves the majority of computing in the analogue domain, holding the promise of a next-generation machine learning accelerator. At the same time, the RNR, as a recurrent neural network (RNN), is suitable for time series data processing. The proposed system is verified by an experimentally collected heart sound dataset by laser-camera system achieving an overall accuracy of 89.03% in identifying twelve testing subjects. Additionally, the elevated heart sound from 8 subjects have been blended with their normal heart sounds to assess the robustness of the proposed system. The classification accuracy reaches over 83% in this mixed test. Furthermore, the identification system was assessed under individuals with different types of heart murmurs and abnormal heart sounds, achieving an overall accuracy of around 90%. The successful demonstration promises a novel application of physical RC for future biometric identification. |
| Author | Heidari, Hadi Liang, Xiangpeng Faccio, Daniele Li, Haobo Ding, Yuqi Vaskeviciute, Marija |
| Author_xml | – sequence: 1 givenname: Yuqi surname: Ding fullname: Ding, Yuqi email: y.ding.4@research.gla.ac.uk organization: James Watt School of Engineering, University of Glasgow, Glasgow, UK – sequence: 2 givenname: Haobo surname: Li fullname: Li, Haobo email: Haobo.Li@glasgow.ac.uk organization: School of Physics and Astronomy, University of Glasgow, Glasgow, UK – sequence: 3 givenname: Xiangpeng surname: Liang fullname: Liang, Xiangpeng email: xpliang@tsinghua.edu.cn organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China – sequence: 4 givenname: Marija surname: Vaskeviciute fullname: Vaskeviciute, Marija email: m.vaskeviciute.1@research.gla.ac.uk organization: School of Physics and Astronomy, University of Glasgow, Glasgow, UK – sequence: 5 givenname: Daniele surname: Faccio fullname: Faccio, Daniele email: Daniele.Faccio@glasgow.ac.uk organization: School of Physics and Astronomy, University of Glasgow, Glasgow, UK – sequence: 6 givenname: Hadi surname: Heidari fullname: Heidari, Hadi email: Hadi.Heidari@glasgow.ac.uk organization: James Watt School of Engineering, University of Glasgow, Glasgow, UK |
| BookMark | eNpNkE1LAzEQQINUsNbePXjIH9g6k-xH91iKH4WCHnoPSTqxkXazJFHov3drC3qagXlvDu-WjbrQEWP3CDNEaB83i9VMgKhmssZGzsUVG4u6xaKs5jj6t9-waUqfAAOKQohmzNT77pi81XseKVH8Dj5yGw79V_bdB3ch8tDn33vKlHch2dBTYXSiLd-Rjpmn8NVtufHhQDl6y_2Wuuzd4GQfujt27fQ-0fQyJ2zz_LRZvhbrt5fVcrEuLMoyF3OngcAY4wyCpFbUdVVLqoVpwJpKUmWNQHAOrC6FGACLhoDKyhkwrZwwOL-1MaQUyak--oOOR4WgTonUkEidEqlLokF5OCueiP5wxLapBMgf6KlnFQ |
| CODEN | ITAICB |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TAI.2025.3617382 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2691-4581 |
| EndPage | 14 |
| ExternalDocumentID | 10_1109_TAI_2025_3617382 11197520 |
| Genre | orig-research |
| GroupedDBID | 0R~ 97E AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IEDLZ IFIPE JAVBF M~E OCL RIA RIE AAYXX CITATION |
| ID | FETCH-LOGICAL-c134t-8fa0e0bbbfb103e9266563e62b70cb53e5cb210ff0ca422e92c1be0e45fb0b93 |
| IEDL.DBID | RIE |
| ISSN | 2691-4581 |
| IngestDate | Sat Nov 29 07:16:10 EST 2025 Wed Oct 15 14:20:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/Crown.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c134t-8fa0e0bbbfb103e9266563e62b70cb53e5cb210ff0ca422e92c1be0e45fb0b93 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TAI_2025_3617382 ieee_primary_11197520 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on artificial intelligence |
| PublicationTitleAbbrev | TAI |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002512227 |
| Score | 2.2784688 |
| Snippet | Heart sound signal has emerged as a promising solution to biometric identification. In this paper, we use an optical flow algorithm to retrieve optical... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptive optics Biomedical optical imaging Biometric identification Cameras Classification algorithms edge computing Heart Machine learning neuromorphic processor Optical reflection optical stethoscope rotating neuron reservoir Speckle Stethoscope |
| Title | Physical reservoir computing for optical stethoscope-based heart sound biometric identification |
| URI | https://ieeexplore.ieee.org/document/11197520 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2691-4581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002512227 issn: 2691-4581 databaseCode: RIE dateStart: 20200101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2691-4581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002512227 issn: 2691-4581 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcBCeRRRHpUHFga3jvNwPCLUCiSoOlSoW2Q7Z9Glqdq0I78d23GhCwObZV2k6L5En-_O3x1CD1oYLbiQRAoOxBWGSC7zknDJuNQsMsYrvD_e-GSSz-diGsTqXgsDAP7yGQzc0tfyy0pvXapsGLmaV8pshN7iPGvEWj8JFUfUjPF9KZKK4ezp1QaALB3ElqZ9q70D6jmYpeKpZNz550ucodNwZsRPDcjn6AiWF6izn8eAw-95iYppcDp2mqL1rlqssfZWlp-wPZ3iauVT19hCW39WXpFCHI-V2A22rvHGDVnCXpLvOvfjRRkuE3n8umg2Hs2eX0gYoEB0FCc1yY2kQJVSRkU0BmHJOM1iyJjiVKs0hlQrG_IZQ7VMGLMGOlJAIUmNokrEV6i9rJZwjbCFOlUZ52Vmw6vEcOV6GDOwcOYSaCx66HHv2mLVtMkofHhBRWFhKBwMRYChh7rOq792waE3f-zfohP3eJP3uEPter2Fe3Ssd_Vis-6j1vvXqO8_hW-3j7W6 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQIMFC-SiifHpgYXDrOHEcjxWiakWpOlSoW2Q7tujSVGna34_tuNCFgc2yTlF0L9Hz3fndAfCsuFGccYEEZxq5whDKRFYgJggTikTGeIX355hNJtl8zqdBrO61MFprf_lMd93S1_KLUm1cqqwXuZoXJTZCP6JJQnAj1_pJqTiqJoTtipGY92b9kQ0BCe3Glqh9s7098tmbpuLJZND652ucg7NwaoT9BuYLcKCXl6C1m8gAww96BfJpcDt0qqJqWy4qqLyVZShoz6ewXPnkNbTg1l-l16Qgx2QFdKOta7h2Y5agF-W73v1wUYTrRB7BNpgN3mavQxRGKCAVxUmNMiOwxlJKIyMca27pmKaxTolkWEkaa6qkDfqMwUokhFgDFUmNdUKNxJLH1-BwWS71DYAWbCpTxorUBliJYdJ1MSbaApoJjWPeAS871-arplFG7gMMzHMLQ-5gyAMMHdB2Xv21Cw69_WP_CZwMZx_jfDyavN-BU_eoJgtyDw7raqMfwLHa1ot19eg_iG8GJLfQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physical+reservoir+computing+for+optical+stethoscope-based+heart+sound+biometric+identification&rft.jtitle=IEEE+transactions+on+artificial+intelligence&rft.au=Ding%2C+Yuqi&rft.au=Li%2C+Haobo&rft.au=Liang%2C+Xiangpeng&rft.au=Vaskeviciute%2C+Marija&rft.date=2025&rft.issn=2691-4581&rft.eissn=2691-4581&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTAI.2025.3617382&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAI_2025_3617382 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-4581&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-4581&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-4581&client=summon |