Bootstrap Deep Spectral Clustering with Optimal Transport

Spectral clustering is a leading clustering method. Two of its major shortcomings are the disjoint optimization process and the limited representation capacity. To address these issues, we propose a deep spectral clustering model (named BootSC), which jointly learns all stages of spectral clustering...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on multimedia s. 1 - 14
Hlavní autoři: Guo, Wengang, Ye, Wei, Chen, Chunchun, Sun, Xin, Bohm, Christian, Plant, Claudia, Rahardja, Susanto
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 2025
Témata:
ISSN:1520-9210, 1941-0077
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Spectral clustering is a leading clustering method. Two of its major shortcomings are the disjoint optimization process and the limited representation capacity. To address these issues, we propose a deep spectral clustering model (named BootSC), which jointly learns all stages of spectral clustering-affinity matrix construction, spectral embedding, and <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-means clustering-using a single network in an end-to-end manner. BootSC leverages effective and efficient optimal-transport-derived supervision to bootstrap the affinity matrix and the cluster assignment matrix. Moreover, a semantically-consistent orthogonal re-parameterization technique is introduced to orthogonalize spectral embeddings, significantly enhancing the discrimination capability. Experimental results indicate that BootSC achieves state-of-the-art clustering performance. For example, it accomplishes a notable 16% NMI improvement over the runner-up method on the challenging ImageNet-Dogs dataset. Our code is available at https://github.com/spdj2271/BootSC .
AbstractList Spectral clustering is a leading clustering method. Two of its major shortcomings are the disjoint optimization process and the limited representation capacity. To address these issues, we propose a deep spectral clustering model (named BootSC), which jointly learns all stages of spectral clustering-affinity matrix construction, spectral embedding, and <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-means clustering-using a single network in an end-to-end manner. BootSC leverages effective and efficient optimal-transport-derived supervision to bootstrap the affinity matrix and the cluster assignment matrix. Moreover, a semantically-consistent orthogonal re-parameterization technique is introduced to orthogonalize spectral embeddings, significantly enhancing the discrimination capability. Experimental results indicate that BootSC achieves state-of-the-art clustering performance. For example, it accomplishes a notable 16% NMI improvement over the runner-up method on the challenging ImageNet-Dogs dataset. Our code is available at https://github.com/spdj2271/BootSC .
Author Rahardja, Susanto
Ye, Wei
Plant, Claudia
Sun, Xin
Chen, Chunchun
Bohm, Christian
Guo, Wengang
Author_xml – sequence: 1
  givenname: Wengang
  surname: Guo
  fullname: Guo, Wengang
  email: guowg97@foxmail.com
  organization: College of Electronic and Information Engineering, Tongji University, Shanghai, China
– sequence: 2
  givenname: Wei
  surname: Ye
  fullname: Ye, Wei
  email: yew@tongji.edu.cn
  organization: College of Electronic and Information Engineering, Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China
– sequence: 3
  givenname: Chunchun
  surname: Chen
  fullname: Chen, Chunchun
  email: c2chen@tongji.edu.cn
  organization: Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, China
– sequence: 4
  givenname: Xin
  surname: Sun
  fullname: Sun, Xin
  email: sunxin1984@ieee.org
  organization: Faculty of Data Science, City University of Macau, Taipa, Macau, China
– sequence: 5
  givenname: Christian
  surname: Bohm
  fullname: Bohm, Christian
  email: christian.boehm@univie.ac.at
  organization: Faculty of Computer Science, University of Vienna, Vienna, Austria
– sequence: 6
  givenname: Claudia
  surname: Plant
  fullname: Plant, Claudia
  email: claudia.plant@univie.ac.at
  organization: Faculty of Computer Science, University of Vienna, Vienna, Austria
– sequence: 7
  givenname: Susanto
  surname: Rahardja
  fullname: Rahardja, Susanto
  email: susantorahardja@ieee.org
  organization: Singapore Institute of Technology, Singapore, Singapore
BookMark eNpFj0tPwzAQhC1UJNrCnQOH_IGEXT_jIwQKSK16IJyjPGwICklkGyH-Pa5aidPOrnZG863IYpxGQ8g1QoYI-rbc7TIKVGRMUsY1PSNL1BxTAKUWUQsKqaYIF2Tl_ScAcgFqSfT9NAUfXD0nD8bMyets2rgNSTF8-2BcP74nP334SPZz6L_ivXT16OfJhUtybuvBm6vTXJO3zWNZPKfb_dNLcbdNW2Q8pLLucgui5jnjsuVcSplrQXmrOtFgK9F21IpcmE41Grs69mW5lZIB2sZCx9YEjrmtm7x3xlazi03cb4VQHdCriF4d0KsTerTcHC29Meb_HSlyrhT7A0saVng
CODEN ITMUF8
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TMM.2025.3623492
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 14
ExternalDocumentID 10_1109_TMM_2025_3623492
11214477
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IFJZH
M43
VH1
ZY4
ID FETCH-LOGICAL-c134t-6ad8f05a48346c4466689524c7d5b1c61fd2f585ed7b91da00738f66301fbf0d3
IEDL.DBID RIE
ISSN 1520-9210
IngestDate Sat Nov 29 07:00:58 EST 2025
Wed Oct 29 06:12:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c134t-6ad8f05a48346c4466689524c7d5b1c61fd2f585ed7b91da00738f66301fbf0d3
PageCount 14
ParticipantIDs crossref_primary_10_1109_TMM_2025_3623492
ieee_primary_11214477
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014507
Score 2.4388003
Snippet Spectral clustering is a leading clustering method. Two of its major shortcomings are the disjoint optimization process and the limited representation...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Clustering algorithms
Deep clustering
Pattern recognition
Spectral clustering
Unsupervised learning
Title Bootstrap Deep Spectral Clustering with Optimal Transport
URI https://ieeexplore.ieee.org/document/11214477
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0077
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014507
  issn: 1520-9210
  databaseCode: RIE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BxQADhVJEeckDC0Na5-HYHqFQsbQwFKlblPghIUFTlZTfz9lJSxkY2CLLUaLPyt133-XuAG5iwwRaxjAQQqogQYcUyNjYoFC2EAVSaEm1HzbBJxMxm8mXpljd18IYY_zPZ6bvLn0uX5dq5aSyAXID5P-c78Iu57wu1tqkDBLma6PRH-HjMJBZ5ySpHEzHY4wEI9ZHa-268f3yQVtDVbxPGbX_-TZHcNiQR3JXn_Yx7Jh5B9rrwQyk-U47cLDVZfAE5H1ZVk7RWJAHYxbEjZx3-gYZvq9cmwTcRJwcS57RfHzg-qbheRdeR4_T4VPQTEwIVBgnVZDmWljKcqcQpsqlalMhWZQorlkRqjS0OrIYIBjNCxnq3OXphEXSQUNbWKrjU2jNy7k5A0J5LuKUxxFuTqhhUhYm0QbZGlUYt-ke3K4xzBZ1Y4zMBxRUZoh35vDOGrx70HXw_exrkDv_Y_0C9t3ttdJxCa1quTJXsKe-qrfP5bU_9m8nWala
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4omqgHUcSIzz148VDYPrbdPSpKMAJ6wIRb0-4jMVFKsPj7nW0L4sGDt2azaZuv7cw333RmAK59zThaRtfhXEgnQIfkCF8bJ5Um5SlSaEFVMWwiGo34ZCJeqmL1ohZGa138fKbb9rDI5atMLqxU1kFugPw_ijZhiwWB55blWqukQcCK6mj0SHhBDGWWWUkqOuPhEGNBj7XRXtt-fL-80NpYlcKr9Or_vJ8D2K_oI7ktn_chbOhpA-rL0Qyk-lIbsLfWZ_AIxF2W5VbTmJF7rWfEDp23Cgfpvi9sowTcRKwgS57RgHzg-qrleRNeew_jbt-pZiY40vWD3AkTxQ1lidUIQ2mTtSEXzAtkpFjqytA1yjMYImgVpcJVic3UcYO0g7omNVT5x1CbZlN9AoRGCffDyPdwc0A1EyLVgdLI16jEyE214GaJYTwrW2PERUhBRYx4xxbvuMK7BU0L38--CrnTP9avYKc_Hg7iwePo6Qx27alK3eMcavl8oS9gW37lb5_zy-IV-AYo46yh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bootstrap+Deep+Spectral+Clustering+with+Optimal+Transport&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Guo%2C+Wengang&rft.au=Ye%2C+Wei&rft.au=Chen%2C+Chunchun&rft.au=Sun%2C+Xin&rft.date=2025&rft.issn=1520-9210&rft.eissn=1941-0077&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTMM.2025.3623492&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2025_3623492
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon