Bootstrap Deep Spectral Clustering with Optimal Transport
Spectral clustering is a leading clustering method. Two of its major shortcomings are the disjoint optimization process and the limited representation capacity. To address these issues, we propose a deep spectral clustering model (named BootSC), which jointly learns all stages of spectral clustering...
Uložené v:
| Vydané v: | IEEE transactions on multimedia s. 1 - 14 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
2025
|
| Predmet: | |
| ISSN: | 1520-9210, 1941-0077 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Spectral clustering is a leading clustering method. Two of its major shortcomings are the disjoint optimization process and the limited representation capacity. To address these issues, we propose a deep spectral clustering model (named BootSC), which jointly learns all stages of spectral clustering-affinity matrix construction, spectral embedding, and <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-means clustering-using a single network in an end-to-end manner. BootSC leverages effective and efficient optimal-transport-derived supervision to bootstrap the affinity matrix and the cluster assignment matrix. Moreover, a semantically-consistent orthogonal re-parameterization technique is introduced to orthogonalize spectral embeddings, significantly enhancing the discrimination capability. Experimental results indicate that BootSC achieves state-of-the-art clustering performance. For example, it accomplishes a notable 16% NMI improvement over the runner-up method on the challenging ImageNet-Dogs dataset. Our code is available at https://github.com/spdj2271/BootSC . |
|---|---|
| AbstractList | Spectral clustering is a leading clustering method. Two of its major shortcomings are the disjoint optimization process and the limited representation capacity. To address these issues, we propose a deep spectral clustering model (named BootSC), which jointly learns all stages of spectral clustering-affinity matrix construction, spectral embedding, and <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-means clustering-using a single network in an end-to-end manner. BootSC leverages effective and efficient optimal-transport-derived supervision to bootstrap the affinity matrix and the cluster assignment matrix. Moreover, a semantically-consistent orthogonal re-parameterization technique is introduced to orthogonalize spectral embeddings, significantly enhancing the discrimination capability. Experimental results indicate that BootSC achieves state-of-the-art clustering performance. For example, it accomplishes a notable 16% NMI improvement over the runner-up method on the challenging ImageNet-Dogs dataset. Our code is available at https://github.com/spdj2271/BootSC . |
| Author | Rahardja, Susanto Ye, Wei Plant, Claudia Sun, Xin Chen, Chunchun Bohm, Christian Guo, Wengang |
| Author_xml | – sequence: 1 givenname: Wengang surname: Guo fullname: Guo, Wengang email: guowg97@foxmail.com organization: College of Electronic and Information Engineering, Tongji University, Shanghai, China – sequence: 2 givenname: Wei surname: Ye fullname: Ye, Wei email: yew@tongji.edu.cn organization: College of Electronic and Information Engineering, Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China – sequence: 3 givenname: Chunchun surname: Chen fullname: Chen, Chunchun email: c2chen@tongji.edu.cn organization: Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, China – sequence: 4 givenname: Xin surname: Sun fullname: Sun, Xin email: sunxin1984@ieee.org organization: Faculty of Data Science, City University of Macau, Taipa, Macau, China – sequence: 5 givenname: Christian surname: Bohm fullname: Bohm, Christian email: christian.boehm@univie.ac.at organization: Faculty of Computer Science, University of Vienna, Vienna, Austria – sequence: 6 givenname: Claudia surname: Plant fullname: Plant, Claudia email: claudia.plant@univie.ac.at organization: Faculty of Computer Science, University of Vienna, Vienna, Austria – sequence: 7 givenname: Susanto surname: Rahardja fullname: Rahardja, Susanto email: susantorahardja@ieee.org organization: Singapore Institute of Technology, Singapore, Singapore |
| BookMark | eNpFj0tPwzAQhC1UJNrCnQOH_IGEXT_jIwQKSK16IJyjPGwICklkGyH-Pa5aidPOrnZG863IYpxGQ8g1QoYI-rbc7TIKVGRMUsY1PSNL1BxTAKUWUQsKqaYIF2Tl_ScAcgFqSfT9NAUfXD0nD8bMyets2rgNSTF8-2BcP74nP334SPZz6L_ivXT16OfJhUtybuvBm6vTXJO3zWNZPKfb_dNLcbdNW2Q8pLLucgui5jnjsuVcSplrQXmrOtFgK9F21IpcmE41Grs69mW5lZIB2sZCx9YEjrmtm7x3xlazi03cb4VQHdCriF4d0KsTerTcHC29Meb_HSlyrhT7A0saVng |
| CODEN | ITMUF8 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TMM.2025.3623492 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0077 |
| EndPage | 14 |
| ExternalDocumentID | 10_1109_TMM_2025_3623492 11214477 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI O9- OCL P2P PQQKQ RIA RIE RNS TN5 AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IFJZH M43 VH1 ZY4 |
| ID | FETCH-LOGICAL-c134t-6ad8f05a48346c4466689524c7d5b1c61fd2f585ed7b91da00738f66301fbf0d3 |
| IEDL.DBID | RIE |
| ISSN | 1520-9210 |
| IngestDate | Sat Nov 29 07:00:58 EST 2025 Wed Oct 29 06:12:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c134t-6ad8f05a48346c4466689524c7d5b1c61fd2f585ed7b91da00738f66301fbf0d3 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TMM_2025_3623492 ieee_primary_11214477 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on multimedia |
| PublicationTitleAbbrev | TMM |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0014507 |
| Score | 2.4388003 |
| Snippet | Spectral clustering is a leading clustering method. Two of its major shortcomings are the disjoint optimization process and the limited representation... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Clustering algorithms Deep clustering Pattern recognition Spectral clustering Unsupervised learning |
| Title | Bootstrap Deep Spectral Clustering with Optimal Transport |
| URI | https://ieeexplore.ieee.org/document/11214477 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 1941-0077 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014507 issn: 1520-9210 databaseCode: RIE dateStart: 19990101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BxQADhVJEeSkDC4PbOC_bIxQqlhaGInWLHD8kJGiqkvL7OTtpKQMDW2Q5UvRZvvvuu9wdwI2UFk2gTIhIaESQ_xtSFIaSiFpq45Anhks_bIJNJnw2Ey9NsbqvhTHG-J_PTN89-ly-LtXKSWUD5AbI_xnbhV3GWF2stUkZJKmvjUZ_FBKBgcw6JxmKwXQ8xkgwSvtorV03vl8-aGuoivcpo_Y_v-YIDhvyGNzVp30MO2begfZ6MEPQ3NMOHGx1GTwBcV-WlVM0FsGDMYvAjZx3-kYwfF-5Ngm4KXBybPCM5uMD1zcNz7vwOnqcDp9IMzGBKBonFcmk5jZMpVMIM-VStRkXaZQoptOCqoxaHVkMEIxmhaBaujwdt0g6QmoLG-r4FFrzcm7OIBDGKqG4URoZgCxirhUytThzhalCp1kPbtcY5ou6MUbuA4pQ5Ih37vDOG7x70HXw_exrkDv_Y_0C9t3rtdJxCa1quTJXsKe-qrfP5bU_9m8wmqoW |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BQQIGCqWI8vTAwuA2ztMeoVAV0RaGInWLHD8kJGiqkvL7sZ20lIGBLbKsKPqS3H33ne8O4JpzbUwgDzELiY8N_1c4yxTBPtFEBx4NFeVu2EQyGtHJhL1UxequFkYp5Q6fqba9dLl8mYuFlco6hhsY_p8km7AVhaFPynKtVdIgjFx1tPFIHmYmlFlmJT3WGQ-HJhb0o7ax17Yf3y8vtDZWxXmVXv2fz3MA-xV9RLfl-z6EDTVtQH05mgFVf2oD9tb6DB4Bu8vzwmoaM3Sv1AzZofNW4UDd94VtlGA2ISvIomdjQD7M-qrleRNeew_jbh9XMxOwIEFY4JhLqr2IW40wFjZZG1MW-aFIZJQRERMtfW1CBCWTjBHJbaaOakM7PKIz7cngGGrTfKpOADGlBRNUCWk4AM8CKoXhakFsS1OZjOIW3CwxTGdla4zUhRQeSw3eqcU7rfBuQdPC97OvQu70j_Ur2OmPh4N08Dh6OoNde6tS9ziHWjFfqAvYFl_F2-f80n0C3zuOrV0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bootstrap+Deep+Spectral+Clustering+with+Optimal+Transport&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Guo%2C+Wengang&rft.au=Ye%2C+Wei&rft.au=Chen%2C+Chunchun&rft.au=Sun%2C+Xin&rft.date=2025&rft.issn=1520-9210&rft.eissn=1941-0077&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTMM.2025.3623492&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2025_3623492 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |