Generative AI-Driven Liver Reconstruction for Healthcare Applications in Consumer Electronics with Diffusion Model and Graph Neural Network
Magnetic hyperthermia therapy (MHT) is an emerging noninvasive treatment for liver cancer that depends on accurate digital liver reconstruction. However, the limited availability of annotated medical data, particularly for tumors and vascular structures, hinders effective model training. This challe...
Saved in:
| Published in: | IEEE transactions on consumer electronics p. 1 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
2025
|
| Subjects: | |
| ISSN: | 0098-3063, 1558-4127 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Magnetic hyperthermia therapy (MHT) is an emerging noninvasive treatment for liver cancer that depends on accurate digital liver reconstruction. However, the limited availability of annotated medical data, particularly for tumors and vascular structures, hinders effective model training. This challenge is compounded by the need for individualized anatomical modeling in portable healthcare systems powered by consumer electronics. To overcome these challenges, we present a generative AI framework that integrates a conditional diffusion model with a graph neural network (GNN) to achieve high-fidelity, patient-specific liver reconstruction. Our framework combines a conditional diffusion model, which synthesizes realistic CT images to enrich liver anatomy, with a graph neural network that refines 3D surface reconstructions. Evaluated on public and clinical datasets, the method achieves higher segmentation accuracy and surface quality than existing approaches. By enhancing preoperative temperature-field simulations, the proposed approach supports individualized MHT planning and shows the potential of embedding generative AI in consumer healthcare devices. |
|---|---|
| AbstractList | Magnetic hyperthermia therapy (MHT) is an emerging noninvasive treatment for liver cancer that depends on accurate digital liver reconstruction. However, the limited availability of annotated medical data, particularly for tumors and vascular structures, hinders effective model training. This challenge is compounded by the need for individualized anatomical modeling in portable healthcare systems powered by consumer electronics. To overcome these challenges, we present a generative AI framework that integrates a conditional diffusion model with a graph neural network (GNN) to achieve high-fidelity, patient-specific liver reconstruction. Our framework combines a conditional diffusion model, which synthesizes realistic CT images to enrich liver anatomy, with a graph neural network that refines 3D surface reconstructions. Evaluated on public and clinical datasets, the method achieves higher segmentation accuracy and surface quality than existing approaches. By enhancing preoperative temperature-field simulations, the proposed approach supports individualized MHT planning and shows the potential of embedding generative AI in consumer healthcare devices. |
| Author | Xu, Xu Jiang, Weiwei Li, Congsheng Yee, Por Lip Yang, Jing Khan, Muhammad Attique Baili, Jamel Liu, Xiaoli |
| Author_xml | – sequence: 1 givenname: Xu orcidid: 0000-0002-3934-9096 surname: Xu fullname: Xu, Xu email: xuxu@ieee.org organization: School of Computer Science and Engineering, Northeastern University, Shenyang, China – sequence: 2 givenname: Jing orcidid: 0009-0008-0467-5984 surname: Yang fullname: Yang, Jing email: s2147529@siswa.um.edu.my organization: Faculty of Computer Science and Information Technology, Center of Research for Cyber Security and Network (CSNET), Universiti Malaya, Kuala Lumpur, Malaysia – sequence: 3 givenname: Xiaoli surname: Liu fullname: Liu, Xiaoli email: liuxiaoli0108@xjtu.edu.cn organization: Med-X Institute, Center for Regenerative and Reconstructive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China – sequence: 4 givenname: Muhammad Attique orcidid: 0000-0001-5723-3858 surname: Khan fullname: Khan, Muhammad Attique email: attique.khan@ieee.org organization: Center of AI, Prince Mohammad bin Fahd University, Alkhobar, KSA – sequence: 5 givenname: Weiwei orcidid: 0000-0003-0953-5047 surname: Jiang fullname: Jiang, Weiwei email: jww@bupt.edu.cn organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 6 givenname: Jamel orcidid: 0000-0001-5564-6114 surname: Baili fullname: Baili, Jamel email: Jabaili@kku.edu.sa organization: Department of Computer Engineering, College of Computer Science, King Khalid University, Abha, Saudi Arabia – sequence: 7 givenname: Por Lip orcidid: 0000-0001-5865-1533 surname: Yee fullname: Yee, Por Lip email: porlip@um.edu.my organization: Faculty of Computer Science and Information Technology, Center of Research for Cyber Security and Network (CSNET), Universiti Malaya, Kuala Lumpur, Malaysia – sequence: 8 givenname: Congsheng orcidid: 0000-0002-7658-1943 surname: Li fullname: Li, Congsheng email: licongsheng@caict.ac.cn organization: China Telecommunication Technology Laboratory, China Academy of Information and Communications Technology, Beijing, China |
| BookMark | eNpFkMtOwzAQRS0EEm1hz4KFfyBlHDuvZZWWtlIBCZV15Dhj1ZA6kZ1Q8Q38NIlaic3cke5jcabk2jYWCXlgMGcMsqd9vpqHEEZzHnMWc3FFJiyK0kCwMLkmE4AsDTjE_JZMvf8EYCIK0wn5XaNFJzvzjXSxDZZueCzdDdfRd1SN9Z3rVWcaS3Xj6AZl3R2UdEO6bWuj5Gh5aizNB-2PQ21Vo-pcY43y9GS6A10arXs_Trw0FdZU2oqunWwP9BV7J-tBulPjvu7IjZa1x_uLzsjH82qfb4Ld23qbL3aBYlx0gagyoSBipcyiuIRSppkuNSoh44TxRKoq0ZGoRFppAJSYoOQRhlipBMIsVXxG4LyrXOO9Q120zhyl-ykYFCPMYoBZjDCLC8yh8niuGET8j7NQAEuA_wEGaHX2 |
| CODEN | ITCEDA |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TCE.2025.3631634 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-4127 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TCE_2025_3631634 11240170 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Large Research Project grantid: RGP.2/275/46 – fundername: National Key Research and Development Program of China grantid: 2022YFC2408000 funderid: 10.13039/501100012166 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 5VS AAYXX ACKIV AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IBMZZ ICLAB IFJZH VH1 |
| ID | FETCH-LOGICAL-c134t-4d94c051ba956b0ba89fbfec4a67137acd7f54d48df00eae7ea35e2edc70298c3 |
| IEDL.DBID | RIE |
| ISSN | 0098-3063 |
| IngestDate | Sat Nov 29 06:50:04 EST 2025 Wed Nov 19 08:26:44 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c134t-4d94c051ba956b0ba89fbfec4a67137acd7f54d48df00eae7ea35e2edc70298c3 |
| ORCID | 0000-0003-0953-5047 0000-0001-5865-1533 0000-0001-5564-6114 0000-0002-7658-1943 0000-0002-3934-9096 0000-0001-5723-3858 0009-0008-0467-5984 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_TCE_2025_3631634 ieee_primary_11240170 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on consumer electronics |
| PublicationTitleAbbrev | T-CE |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0014528 |
| Score | 2.4241538 |
| Snippet | Magnetic hyperthermia therapy (MHT) is an emerging noninvasive treatment for liver cancer that depends on accurate digital liver reconstruction. However, the... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Biomedical imaging Consumer electronics Consumer Electronics Healthcare Deep Learning Diffusion Model Graph neural networks Image reconstruction Image segmentation Liver Magnetic Hyperthermia Therapy Reconstruction Segmentation Surface reconstruction Three-dimensional displays Tumors |
| Title | Generative AI-Driven Liver Reconstruction for Healthcare Applications in Consumer Electronics with Diffusion Model and Graph Neural Network |
| URI | https://ieeexplore.ieee.org/document/11240170 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-4127 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014528 issn: 0098-3063 databaseCode: RIE dateStart: 19750101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZoxQADZxHl0htYGEJNYsfxWJWWIqGKoUhskU-pEkpRD_4Efxq_JD0YGNgiK7Gs9xz7e9f3CLmNeSa0z3jEBfNRQOAqktr7SGijFWXWZIkqm02I0Sh7f5evdbF6WQvjnCuTz9w9PpaxfDs1S3SVdQI2YMj30iANIdKqWGsdMmA8zlYEmQEHJ6uYJJWdca8fLMGY3ydpEvAH-3UHbTVVKe-UweE_V3NEDmrwCN1K28dkxxUnZH-LUvCUfFc80niIQfc5epzhaQYvmH0BaGpuCGMhwFUYrtO_oLsVyoZJAb26OBP66045c0C3LTxOvF-ilw2wk9oHqMLCExJfA1J9hAWOqtzyFnkb9Me9YVQ3XIjMQ8IWEbOSmfCXahWsJk21yqTX3hmm0mDLCmWs8JxZlllPqVNOOJVwFztrBDK5m-SMNItp4c4JUM7jVKWp5w6r7aW01lDmNHUyTKOzNrlbqSD_rHg18tIeoTIP6spRXXmtrjZpofQ379WCv_hj_JLs4eeVo-SKNINc3TXZNV-LyXx2U-6aH0Vhw7o |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIAEDb0R53sDCYDCJncRjVVqKKBVDkdgiP6VKKCBo-RP8aXxJ-mBgYLMiy7LuHPu713eEXEQiS7XPBBUp9zQgcEWl9p6m2mjFuDVZrMpmE-lgkL28yKe6WL2shXHOlcln7gqHZSzfvpkJusquAzbgyPeyTFYE5xGryrVmQQMuomxKkRmQcDyNSjJ5PWx3gi0Yias4iQMC4b9eoYW2KuWr0t365362yWYNH6FV6XuHLLlil2wskAruke-KSRqvMWjd09sPvM-gj_kXgMbmnDIWAmCF3iwBDFoLwWwYFdCuyzOhM-uV8wnouIXbkfcT9LMB9lJ7BVVYuEPqa0Cyj7DBQZVdvk-eu51hu0frlgvU3MR8TLmV3IT_VKtgN2mmVSa99s5wlQRrNlXGpl5wyzPrGXPKpU7FwkXOmhS53E18QBrFW-EOCTAhokQliRcO6-2ltNYw7jRzMiyjsya5nKogf6-YNfLSImEyD-rKUV15ra4m2Ufpz-fVgj_64_s5WesNH_t5_37wcEzWcanKbXJCGkHG7pSsmq_x6PPjrDxBP5vHxwE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+AI-Driven+Liver+Reconstruction+for+Healthcare+Applications+in+Consumer+Electronics+with+Diffusion+Model+and+Graph+Neural+Network&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Xu%2C+Xu&rft.au=Yang%2C+Jing&rft.au=Liu%2C+Xiaoli&rft.au=Khan%2C+Muhammad+Attique&rft.date=2025&rft.issn=0098-3063&rft.eissn=1558-4127&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCE.2025.3631634&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCE_2025_3631634 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon |