Generative AI-Driven Liver Reconstruction for Healthcare Applications in Consumer Electronics with Diffusion Model and Graph Neural Network

Magnetic hyperthermia therapy (MHT) is an emerging noninvasive treatment for liver cancer that depends on accurate digital liver reconstruction. However, the limited availability of annotated medical data, particularly for tumors and vascular structures, hinders effective model training. This challe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on consumer electronics s. 1
Hlavní autoři: Xu, Xu, Yang, Jing, Liu, Xiaoli, Khan, Muhammad Attique, Jiang, Weiwei, Baili, Jamel, Yee, Por Lip, Li, Congsheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 2025
Témata:
ISSN:0098-3063, 1558-4127
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Magnetic hyperthermia therapy (MHT) is an emerging noninvasive treatment for liver cancer that depends on accurate digital liver reconstruction. However, the limited availability of annotated medical data, particularly for tumors and vascular structures, hinders effective model training. This challenge is compounded by the need for individualized anatomical modeling in portable healthcare systems powered by consumer electronics. To overcome these challenges, we present a generative AI framework that integrates a conditional diffusion model with a graph neural network (GNN) to achieve high-fidelity, patient-specific liver reconstruction. Our framework combines a conditional diffusion model, which synthesizes realistic CT images to enrich liver anatomy, with a graph neural network that refines 3D surface reconstructions. Evaluated on public and clinical datasets, the method achieves higher segmentation accuracy and surface quality than existing approaches. By enhancing preoperative temperature-field simulations, the proposed approach supports individualized MHT planning and shows the potential of embedding generative AI in consumer healthcare devices.
AbstractList Magnetic hyperthermia therapy (MHT) is an emerging noninvasive treatment for liver cancer that depends on accurate digital liver reconstruction. However, the limited availability of annotated medical data, particularly for tumors and vascular structures, hinders effective model training. This challenge is compounded by the need for individualized anatomical modeling in portable healthcare systems powered by consumer electronics. To overcome these challenges, we present a generative AI framework that integrates a conditional diffusion model with a graph neural network (GNN) to achieve high-fidelity, patient-specific liver reconstruction. Our framework combines a conditional diffusion model, which synthesizes realistic CT images to enrich liver anatomy, with a graph neural network that refines 3D surface reconstructions. Evaluated on public and clinical datasets, the method achieves higher segmentation accuracy and surface quality than existing approaches. By enhancing preoperative temperature-field simulations, the proposed approach supports individualized MHT planning and shows the potential of embedding generative AI in consumer healthcare devices.
Author Xu, Xu
Jiang, Weiwei
Li, Congsheng
Yee, Por Lip
Yang, Jing
Khan, Muhammad Attique
Baili, Jamel
Liu, Xiaoli
Author_xml – sequence: 1
  givenname: Xu
  orcidid: 0000-0002-3934-9096
  surname: Xu
  fullname: Xu, Xu
  email: xuxu@ieee.org
  organization: School of Computer Science and Engineering, Northeastern University, Shenyang, China
– sequence: 2
  givenname: Jing
  orcidid: 0009-0008-0467-5984
  surname: Yang
  fullname: Yang, Jing
  email: s2147529@siswa.um.edu.my
  organization: Faculty of Computer Science and Information Technology, Center of Research for Cyber Security and Network (CSNET), Universiti Malaya, Kuala Lumpur, Malaysia
– sequence: 3
  givenname: Xiaoli
  surname: Liu
  fullname: Liu, Xiaoli
  email: liuxiaoli0108@xjtu.edu.cn
  organization: Med-X Institute, Center for Regenerative and Reconstructive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
– sequence: 4
  givenname: Muhammad Attique
  orcidid: 0000-0001-5723-3858
  surname: Khan
  fullname: Khan, Muhammad Attique
  email: attique.khan@ieee.org
  organization: Center of AI, Prince Mohammad bin Fahd University, Alkhobar, KSA
– sequence: 5
  givenname: Weiwei
  orcidid: 0000-0003-0953-5047
  surname: Jiang
  fullname: Jiang, Weiwei
  email: jww@bupt.edu.cn
  organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 6
  givenname: Jamel
  orcidid: 0000-0001-5564-6114
  surname: Baili
  fullname: Baili, Jamel
  email: Jabaili@kku.edu.sa
  organization: Department of Computer Engineering, College of Computer Science, King Khalid University, Abha, Saudi Arabia
– sequence: 7
  givenname: Por Lip
  orcidid: 0000-0001-5865-1533
  surname: Yee
  fullname: Yee, Por Lip
  email: porlip@um.edu.my
  organization: Faculty of Computer Science and Information Technology, Center of Research for Cyber Security and Network (CSNET), Universiti Malaya, Kuala Lumpur, Malaysia
– sequence: 8
  givenname: Congsheng
  orcidid: 0000-0002-7658-1943
  surname: Li
  fullname: Li, Congsheng
  email: licongsheng@caict.ac.cn
  organization: China Telecommunication Technology Laboratory, China Academy of Information and Communications Technology, Beijing, China
BookMark eNpFkMtOwzAQRS0EEm1hz4KFfyBlHDuvZZWWtlIBCZV15Dhj1ZA6kZ1Q8Q38NIlaic3cke5jcabk2jYWCXlgMGcMsqd9vpqHEEZzHnMWc3FFJiyK0kCwMLkmE4AsDTjE_JZMvf8EYCIK0wn5XaNFJzvzjXSxDZZueCzdDdfRd1SN9Z3rVWcaS3Xj6AZl3R2UdEO6bWuj5Gh5aizNB-2PQ21Vo-pcY43y9GS6A10arXs_Trw0FdZU2oqunWwP9BV7J-tBulPjvu7IjZa1x_uLzsjH82qfb4Ld23qbL3aBYlx0gagyoSBipcyiuIRSppkuNSoh44TxRKoq0ZGoRFppAJSYoOQRhlipBMIsVXxG4LyrXOO9Q120zhyl-ykYFCPMYoBZjDCLC8yh8niuGET8j7NQAEuA_wEGaHX2
CODEN ITCEDA
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TCE.2025.3631634
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-4127
EndPage 1
ExternalDocumentID 10_1109_TCE_2025_3631634
11240170
Genre orig-research
GrantInformation_xml – fundername: Large Research Project
  grantid: RGP.2/275/46
– fundername: National Key Research and Development Program of China
  grantid: 2022YFC2408000
  funderid: 10.13039/501100012166
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
5VS
AAYXX
ACKIV
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
ID FETCH-LOGICAL-c134t-4d94c051ba956b0ba89fbfec4a67137acd7f54d48df00eae7ea35e2edc70298c3
IEDL.DBID RIE
ISSN 0098-3063
IngestDate Sat Nov 29 06:50:04 EST 2025
Wed Nov 19 08:26:44 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c134t-4d94c051ba956b0ba89fbfec4a67137acd7f54d48df00eae7ea35e2edc70298c3
ORCID 0000-0003-0953-5047
0000-0001-5865-1533
0000-0001-5564-6114
0000-0002-7658-1943
0000-0002-3934-9096
0000-0001-5723-3858
0009-0008-0467-5984
PageCount 1
ParticipantIDs crossref_primary_10_1109_TCE_2025_3631634
ieee_primary_11240170
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on consumer electronics
PublicationTitleAbbrev T-CE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014528
Score 2.4240708
Snippet Magnetic hyperthermia therapy (MHT) is an emerging noninvasive treatment for liver cancer that depends on accurate digital liver reconstruction. However, the...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Biomedical imaging
Consumer electronics
Consumer Electronics Healthcare
Deep Learning
Diffusion Model
Graph neural networks
Image reconstruction
Image segmentation
Liver
Magnetic Hyperthermia Therapy
Reconstruction
Segmentation
Surface reconstruction
Three-dimensional displays
Tumors
Title Generative AI-Driven Liver Reconstruction for Healthcare Applications in Consumer Electronics with Diffusion Model and Graph Neural Network
URI https://ieeexplore.ieee.org/document/11240170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-4127
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014528
  issn: 0098-3063
  databaseCode: RIE
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5s8aAHnxXrizl48ZA2yW6a5Fhqa4VSPFToLexjFgqSSh_-Cf-0s0n68ODBW1gSWGY2s9-8vmHsEUViyS5KOrxp5IkgQE9xTsbQ2tDHhAehKdj1R_F4nEyn6VvVrF70wiBiUXyGLfdY5PLNXK9dqKxN2EA4vpcaq8Vxp2zW2qYMRBQmG4JMwsF8k5P00_ak1ydPMIxavMMJf4hfd9DeUJXiThmc_nM3Z-ykAo_QLbV9zg4wv2DHe5SCl-y75JF2Rgy6r97zwlkzGLnqC3Cu5o4wFgiuwnBb_gXdvVQ2zHLoVc2Z0N9OylmCC9vC88zatYuygZuk9gEyN_DiiK_BUX3QBsdlbXmDvQ_6k97QqwYueDrgYuUJkwpNf6mS5DUpX8kktcqiFrJDvmwstYltJIxIjPV9lBij5BGGaHTsmNw1v2L1fJ7jNQMfuUhpXRo0IpDkRKoOV5FSBPgI5akme9qoIPsseTWywh_x04zUlTl1ZZW6mqzhpL97rxL8zR_rt-zIfV4GSu5YneSK9-xQf61my8VDcWp-ANzPwrM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgIAEH1iJ25sCFQ9okdprkWHWhFaHiUKTeIjseS5VQisryE_w04yRdOHDgFllRZM044zfbG8buUESG7KKkwxsHjvA8dBTnZAyN8V2MuOfrgl0_CUejaDKJn6tm9aIXBhGL4jNs2Mcil69n2acNlTUJGwjL97LJtgIhfLds11omDUTgRwuKTELCfJGVdOPmuNMjX9APGrzFCYGIX7fQ2liV4lbpH_xzP4dsv4KP0C71fcQ2MD9me2ukgifsu2SStmYM2kOnO7f2DBJbfwHW2VxRxgIBVhgsC8CgvZbMhmkOnao9E3rLWTnvYAO30J0a82njbGBnqb2CzDU8WOprsGQftMFRWV1eZy_93rgzcKqRC07mcfHhCB2LjP5TJclvUq6SUWyUwUzIFnmzocx0aAKhRaSN66LEECUP0EedhZbLPeOnrJbPcjxj4CIXMa1LjVp4ktxI1eIqUIogH-E8dc7uFypI30pmjbTwSNw4JXWlVl1ppa5zVrfSX71XCf7ij_VbtjMYPyVpMhw9XrJd-6kybHLFaiRjvGbb2dfH9H1-U5ygHyUExfo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+AI-Driven+Liver+Reconstruction+for+Healthcare+Applications+in+Consumer+Electronics+with+Diffusion+Model+and+Graph+Neural+Network&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Xu%2C+Xu&rft.au=Yang%2C+Jing&rft.au=Liu%2C+Xiaoli&rft.au=Khan%2C+Muhammad+Attique&rft.date=2025&rft.pub=IEEE&rft.issn=0098-3063&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCE.2025.3631634&rft.externalDocID=11240170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon