Attention-Guided Encoder-Decoder Design for Efficient RIS Phase Configuration in Time-Varying IoT Networks

The integration of Artificial Intelligence (AI) into wireless communication has enabled adaptive, efficient, robust, and scalable system designs. Reconfigurable Intelligent Surfaces (RIS) offer a promising paradigm for AI-driven control by dynamically adjusting the wireless environment through Phase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on artificial intelligence S. 1 - 12
Hauptverfasser: Bhardwaj, Vikash Kumar, Singh, Abhisekh, Sahoo, Omm Prakash, Shukla, Mahendra K., Pandey, Om Jee
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 2025
Schlagworte:
ISSN:2691-4581, 2691-4581
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The integration of Artificial Intelligence (AI) into wireless communication has enabled adaptive, efficient, robust, and scalable system designs. Reconfigurable Intelligent Surfaces (RIS) offer a promising paradigm for AI-driven control by dynamically adjusting the wireless environment through Phase Configuration Sequence (PCS) bits sent from the Base Station (BS). By steering signals intelligently, RIS can improve coverage and direct transmissions to specific locations. However, the increasing size of RIS and rapidly changing IoT device positions in dynamic environments impose significant feedback bandwidth constraints due to frequent PCS bits updates. To address this, we propose a novel Attention-Guided Encoder-Decoder with Normalization Enhancement (AGENE) framework that compresses PCS bits at the BS using a lightweight encoder and reconstructs them at the RIS controller using a decoder. Our design incorporates a custom attention mechanism and Generalized Divisive Normalization (GDN)/Inverse GDN layers to enhance feature extraction and normalization. We also evaluate our method under different noise models, including Gaussian and Rician noise, to test robustness in practical scenarios. Finally, to evaluate the effectiveness of our proposed method (AGENE), we compared its performance with existing methods across different compression ratios and noise conditions, focusing on loss reduction and Normalized Mean Square Error (NMSE). In Additive White Gaussian Noise (AWGN) conditions, AGENE achieved a loss reduction of 28.12% compared to PSC-DN, 43.9% compared to DL-CsiNet, and 58.18% compared to CsiNet at a compression ratio of 2/9. Under Rician noise, AGENE showed a reduction of 19.39% compared to PSC-DN, 37.01% compared to DL-CsiNet, and 45.21% compared to CsiNet, again at the same compression ratio. These results consistently demonstrate that AGENE outperforms existing methods by a significant margin across both metrics and noise conditions.
AbstractList The integration of Artificial Intelligence (AI) into wireless communication has enabled adaptive, efficient, robust, and scalable system designs. Reconfigurable Intelligent Surfaces (RIS) offer a promising paradigm for AI-driven control by dynamically adjusting the wireless environment through Phase Configuration Sequence (PCS) bits sent from the Base Station (BS). By steering signals intelligently, RIS can improve coverage and direct transmissions to specific locations. However, the increasing size of RIS and rapidly changing IoT device positions in dynamic environments impose significant feedback bandwidth constraints due to frequent PCS bits updates. To address this, we propose a novel Attention-Guided Encoder-Decoder with Normalization Enhancement (AGENE) framework that compresses PCS bits at the BS using a lightweight encoder and reconstructs them at the RIS controller using a decoder. Our design incorporates a custom attention mechanism and Generalized Divisive Normalization (GDN)/Inverse GDN layers to enhance feature extraction and normalization. We also evaluate our method under different noise models, including Gaussian and Rician noise, to test robustness in practical scenarios. Finally, to evaluate the effectiveness of our proposed method (AGENE), we compared its performance with existing methods across different compression ratios and noise conditions, focusing on loss reduction and Normalized Mean Square Error (NMSE). In Additive White Gaussian Noise (AWGN) conditions, AGENE achieved a loss reduction of 28.12% compared to PSC-DN, 43.9% compared to DL-CsiNet, and 58.18% compared to CsiNet at a compression ratio of 2/9. Under Rician noise, AGENE showed a reduction of 19.39% compared to PSC-DN, 37.01% compared to DL-CsiNet, and 45.21% compared to CsiNet, again at the same compression ratio. These results consistently demonstrate that AGENE outperforms existing methods by a significant margin across both metrics and noise conditions.
Author Sahoo, Omm Prakash
Bhardwaj, Vikash Kumar
Pandey, Om Jee
Singh, Abhisekh
Shukla, Mahendra K.
Author_xml – sequence: 1
  givenname: Vikash Kumar
  surname: Bhardwaj
  fullname: Bhardwaj, Vikash Kumar
  email: vikashkumarbhardwaj.rs.ece22@iitbhu.ac.in
  organization: Department of Electronics Engineering, Indian Institute of Technology (BHU) Varanasi, India
– sequence: 2
  givenname: Abhisekh
  surname: Singh
  fullname: Singh, Abhisekh
  email: abhisheksingh.iiitbh@gmail.com
  organization: Department of Computer Science and Engineering, IIIT-BH, Bhagalpur, India
– sequence: 3
  givenname: Omm Prakash
  surname: Sahoo
  fullname: Sahoo, Omm Prakash
  email: ommprakash.sahoo.eee20@iitbhu.ac.in
  organization: Department of Electronics Engineering, Indian Institute of Technology (BHU) Varanasi, India
– sequence: 4
  givenname: Mahendra K.
  surname: Shukla
  fullname: Shukla, Mahendra K.
  email: mahendra@iiitm.ac.in
  organization: Department of Information Technology at ABV-IIITM Gwalior, India
– sequence: 5
  givenname: Om Jee
  surname: Pandey
  fullname: Pandey, Om Jee
  email: omjee.ece@iitbhu.ac.in
  organization: Department of Electronics Engineering, Indian Institute of Technology (BHU) Varanasi, India
BookMark eNpNkM1OwzAQhC1UJErpnQMHv0CK17Hzc6zaUiJVgCBwjRJnXVyojexUFW9PSivBaWalmdHquyQD6ywScg1sAsDy23JaTDjjchInwOIsPyNDnuQQCZnB4J-_IOMQNoz1UeCcp0OymXYd2s44Gy13psWWLqxyLfpojr9K5xjM2lLtPF1obZTp4_S5eKFP73VAOnNWm_XO14cNaiwtzRajt9p_G7umhSvpA3Z75z_CFTnX9WfA8UlH5PVuUc7uo9XjsphNV5GCWHQRl1IBa0DXbZ6oJmk040I3CjIBNVMib0FK3epMY5NojFMlMM0U9EcuNWPxiLDjrvIuBI-6-vJm2z9UAasOuKoeV3XAVZ1w9ZWbY8Ug4l8cIMmETOMfVUNpPw
CODEN ITAICB
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TAI.2025.3610389
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2691-4581
EndPage 12
ExternalDocumentID 10_1109_TAI_2025_3610389
11168457
Genre orig-research
GroupedDBID 0R~
97E
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IEDLZ
IFIPE
JAVBF
M~E
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c134t-255c10b1fad96cb6bf024fbc1841a0c49d155fdf8feb6fe37c4e78c1b6f95f003
IEDL.DBID RIE
ISSN 2691-4581
IngestDate Sat Nov 29 07:27:40 EST 2025
Wed Oct 01 07:05:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c134t-255c10b1fad96cb6bf024fbc1841a0c49d155fdf8feb6fe37c4e78c1b6f95f003
PageCount 12
ParticipantIDs crossref_primary_10_1109_TAI_2025_3610389
ieee_primary_11168457
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on artificial intelligence
PublicationTitleAbbrev TAI
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002512227
Score 2.2784297
Snippet The integration of Artificial Intelligence (AI) into wireless communication has enabled adaptive, efficient, robust, and scalable system designs....
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Artificial intelligence
Bandwidth
Base Station (BS)
Decoding
Internet of Things
Internet of Things (IoT)
Noise
Noise reduction
Reconfigurable Intelligent Surface (RIS)
Reconfigurable intelligent surfaces
Rician channels
Training
Wireless communication
Title Attention-Guided Encoder-Decoder Design for Efficient RIS Phase Configuration in Time-Varying IoT Networks
URI https://ieeexplore.ieee.org/document/11168457
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE
  customDbUrl:
  eissn: 2691-4581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512227
  issn: 2691-4581
  databaseCode: RIE
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2691-4581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512227
  issn: 2691-4581
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZoxcBCOYoolzywMLjN6cRjRVOoBFUFpeoW-YQwpChNGPnt2E7KMTAw5ZATWe_56Z3fewBchiL2qcA-UsJnKMCcIq0VXWRapVMaCqxson1xF02n8XJJZg1Y3WJhpJS2-Ez2za3N5YsVr0yobKDlEsdBGLVAK4pwDdb6CqgYRe150SYV6ZDBfDjRDqAX9n1s2oCTX6rnxywVq0rGnX9uYg_sNjYjHNZM3gdbMj8Anc08BtiI5yF4HZZlXb2IbqpMSAGT3EDWCzSS9gpHtl4DakMVJrZ3hF4OHyaPcPaitRk08L_suaoPBcxyaAAiaEELg4WCk9UcTuuq8XUXPI2T-fUtamYpIO76QYm058Bdh7mKCoI5w0xp5awY1w6eSx0eEKENCyVUrCTDSvoRD2QUc1c_kFBp0T8C7XyVy2MAJZaa1k7AsEu1MRYSLCL9r4B6AWVMeD1wtSFz-la3zEitq-GQVLMkNSxJG5b0QNdQ-HtdQ9yTP96fgh3zeR0DOQPtsqjkOdjm72W2Li5A6_4jubDH4hPWlrdl
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLagIMFCOYoopwcWBrc5HCcZK9rSilJVUKpukU8IQ4rSlN-P7aQcAwNTEsuyovf89M7vPQCuAxH5VBAfKeEzhAmnSGtFF5lW6ZQGgiibaJ-NwvE4ms_jSQVWt1gYKaUtPpMt82pz-WLBVyZU1tZySSIchJtgy4zOquBaXyEVo6o9L1wnI524Pe0MtQvoBS2fmEbg8S_l82OailUm_fo_f2Mf7FVWI-yUbD4AGzI7BPX1RAZYCegReOsURVm_iO5WqZAC9jIDWs9RV9on7NqKDahNVdiz3SP0dvg4fIKTV63PoAEApi-r8lrANIMGIoJmNDdoKDhcTOG4rBtfNsBzvze9HaBqmgLiro8LpH0H7jrMVVTEhDPClFbPinHt4rnU4TgW2rRQQkVKMqKkH3Isw4i7-iMOlBb-Y1DLFpk8AVASqWntYEZcqs2xICYi1Gdh6mHKmPCa4GZN5uS9bJqRWGfDiRPNksSwJKlY0gQNQ-HvfRVxT_9YvwI7g-nDKBkNx_dnYNccVUZEzkGtyFfyAmzzjyJd5pf2cnwCN1S5fQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-Guided+Encoder-Decoder+Design+for+Efficient+RIS+Phase+Configuration+in+Time-Varying+IoT+Networks&rft.jtitle=IEEE+transactions+on+artificial+intelligence&rft.au=Bhardwaj%2C+Vikash+Kumar&rft.au=Singh%2C+Abhisekh&rft.au=Sahoo%2C+Omm+Prakash&rft.au=Shukla%2C+Mahendra+K.&rft.date=2025&rft.issn=2691-4581&rft.eissn=2691-4581&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTAI.2025.3610389&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAI_2025_3610389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-4581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-4581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-4581&client=summon