Complex and Lagrangian surfaces of the complex projective plane via Kählerian Killing Spin c spinors
The complex projective space CP 2 of complex dimension 2 has a Spin c structure carrying Kählerian Killing spinors. The restriction of one of these Kählerian Killing spinors to a Lagrangian or complex surface M 2 characterizes the isometric immersion of M into CP 2 .
Uloženo v:
| Vydáno v: | Journal of geometry and physics Ročník 116; s. 316 - 329 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier
01.06.2017
|
| Témata: | |
| ISSN: | 0393-0440 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The complex projective space CP 2 of complex dimension 2 has a Spin c structure carrying Kählerian Killing spinors. The restriction of one of these Kählerian Killing spinors to a Lagrangian or complex surface M 2 characterizes the isometric immersion of M into CP 2 . |
|---|---|
| AbstractList | The complex projective space CP 2 of complex dimension 2 has a Spin c structure carrying Kählerian Killing spinors. The restriction of one of these Kählerian Killing spinors to a Lagrangian or complex surface M 2 characterizes the isometric immersion of M into CP 2 . |
| Author | Nakad, Roger Roth, Julien |
| Author_xml | – sequence: 1 givenname: Roger surname: Nakad fullname: Nakad, Roger – sequence: 2 givenname: Julien surname: Roth fullname: Roth, Julien |
| BackLink | https://hal.science/hal-01338103$$DView record in HAL |
| BookMark | eNqFkLFOwzAQhj0UibbwCsgrQ8I5TtNUYqkqoKiRGIDZujhO4sh1IjtU9H14E16MRKULC9N_On3fnfTPyMS2VhFywyBkwJK7JqxUu-_qow8jYMsQohBgMSFT4CseQBzDJZl53wBAEq_YlKjNgBv1SdEWNMPKoa00Wuo_XIlSedqWtK8Vlb9Y59pGyV4fFO0MWkUPGunu-6s2yo3eThujbUVfO22ppH6I1vkrclGi8er6N-fk_fHhbbMNspen5806CyTjMQuKCJdFKfNELlLEpFQIUg5DnHJMcw55Wix5KRe55MjyKM9jKHgRKZWwMgZUfE5uT3drNKJzeo_uKFrUYrvOxLgDxnnKgB_YwN6fWOla750qhdQ99rq1vUNtBAMxVioaca5UjJUKiMRQ6aAnf_Tzv3_EHzBnhok |
| CitedBy_id | crossref_primary_10_1007_s00006_019_0970_3 crossref_primary_10_1007_s10455_021_09802_4 crossref_primary_10_1007_s00006_022_01205_3 |
| Cites_doi | 10.1023/A:1006596720792 10.1023/A:1006608908156 10.1090/S0002-9947-09-04555-3 10.1007/s00209-006-0936-8 10.1007/s10711-010-9515-6 10.1007/s000140050144 10.1007/BF00128050 10.1112/S002461150401500X 10.4171/136 10.1512/iumj.2008.57.3281 10.1016/S0393-0440(98)00018-7 10.1016/j.difgeo.2009.10.005 10.1016/j.geomphys.2008.01.007 10.1007/s002200050142 10.1016/j.geomphys.2015.01.002 10.1007/s10455-013-9375-z 10.1007/s11040-011-9093-3 10.1016/j.geomphys.2005.06.013 10.1007/s10455-012-9321-5 10.36045/bbms/1414091007 10.1016/0001-8708(74)90021-8 10.4171/CMH/86 10.1016/j.geomphys.2015.05.002 10.1016/j.geomphys.2013.08.006 10.1023/A:1006550532236 10.4171/025 10.1016/j.geomphys.2010.03.007 10.1142/S0219887811005695 10.1512/iumj.2007.56.2818 10.1142/S0129167X0200140X |
| ContentType | Journal Article |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC VOOES |
| DOI | 10.1016/j.geomphys.2017.02.005 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Physics |
| EndPage | 329 |
| ExternalDocumentID | oai:HAL:hal-01338103v1 10_1016_j_geomphys_2017_02_005 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9DU 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABAOU ABFNM ABJNI ABMAC ABNEU ABWVN ABXDB ACDAQ ACFVG ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADGUI ADIYS ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CITATION CS3 D-I DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HME HMJ HMV HVGLF HZ~ IHE J1W KOM LZ3 M25 M38 M41 MHUIS MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SDF SDG SES SEW SHN SME SPC SPCBC SPD SPG SSQ SSW SSZ T5K WUQ XPP ~G- ~HD 1XC VOOES |
| ID | FETCH-LOGICAL-c1341-d2a7dfcb6c58aa6fea0ccaa6483a8b30b8d73fc5bc3a1b2bb40d3d2ee61f40ae3 |
| ISSN | 0393-0440 |
| IngestDate | Tue Oct 14 20:40:55 EDT 2025 Tue Nov 18 21:52:55 EST 2025 Sat Nov 29 02:17:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1341-d2a7dfcb6c58aa6fea0ccaa6483a8b30b8d73fc5bc3a1b2bb40d3d2ee61f40ae3 |
| ORCID | 0000-0003-0880-5674 |
| OpenAccessLink | https://hal.science/hal-01338103 |
| PageCount | 14 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01338103v1 crossref_citationtrail_10_1016_j_geomphys_2017_02_005 crossref_primary_10_1016_j_geomphys_2017_02_005 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-00 |
| PublicationDateYYYYMMDD | 2017-06-01 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-00 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of geometry and physics |
| PublicationYear | 2017 |
| Publisher | Elsevier |
| Publisher_xml | – name: Elsevier |
| References | Bayard (10.1016/j.geomphys.2017.02.005_br000085) 2013; 44 Roth (10.1016/j.geomphys.2017.02.005_br000100) 2014; 21 Lawn (10.1016/j.geomphys.2017.02.005_br000075) 2010; 28 Bayard (10.1016/j.geomphys.2017.02.005_br000090) 2013; 74 Morel (10.1016/j.geomphys.2017.02.005_br000040) 2005; vol. 23 Lawn (10.1016/j.geomphys.2017.02.005_br000045) 2008; 58 10.1016/j.geomphys.2017.02.005_br000055 Taimanov (10.1016/j.geomphys.2017.02.005_br000110) 2006; 56 Moroianu (10.1016/j.geomphys.2017.02.005_br000130) 2007; vol. 69 Ballmann (10.1016/j.geomphys.2017.02.005_br000135) 2006 Lawson (10.1016/j.geomphys.2017.02.005_br000145) 1989; vol. 38 10.1016/j.geomphys.2017.02.005_br000150 Taimanov (10.1016/j.geomphys.2017.02.005_br000065) 1997; 15 Ginoux (10.1016/j.geomphys.2017.02.005_br000180) 2002; 13 Daniel (10.1016/j.geomphys.2017.02.005_br000005) 2009; 361 Lawn (10.1016/j.geomphys.2017.02.005_br000050) 2011; 14 Hélein (10.1016/j.geomphys.2017.02.005_br000120) 2005; 90 Romon (10.1016/j.geomphys.2017.02.005_br000105) 2013 Daniel (10.1016/j.geomphys.2017.02.005_br000010) 2007; 82 Lawn (10.1016/j.geomphys.2017.02.005_br000020) 2015; 90 Ginoux (10.1016/j.geomphys.2017.02.005_br000185) 2009; vol. 1976 Urbano (10.1016/j.geomphys.2017.02.005_br000125) 2007; 56 Nakad (10.1016/j.geomphys.2017.02.005_br000080) 2012; 42 Kowalczyk (10.1016/j.geomphys.2017.02.005_br000015) 2011; 151 Moroianu (10.1016/j.geomphys.2017.02.005_br000200) 1997; 187 Bourguignon (10.1016/j.geomphys.2017.02.005_br000165) 2015 Hitchin (10.1016/j.geomphys.2017.02.005_br000190) 1974; 14 Friedrich (10.1016/j.geomphys.2017.02.005_br000035) 1998 Ginoux (10.1016/j.geomphys.2017.02.005_br000175) 2002 Roth (10.1016/j.geomphys.2017.02.005_br000070) 2010; 60 Hélein (10.1016/j.geomphys.2017.02.005_br000115) 2000; 75 Kirchberg (10.1016/j.geomphys.2017.02.005_br000195) 1986; 4 Piccione (10.1016/j.geomphys.2017.02.005_br000025) 2008; 57 Bayard (10.1016/j.geomphys.2017.02.005_br000095) 2015; 95 Roth (10.1016/j.geomphys.2017.02.005_br000030) 2011; 8 Bär (10.1016/j.geomphys.2017.02.005_br000170) 1998; 16 Konopelchenko (10.1016/j.geomphys.2017.02.005_br000060) 2000; 18 Besse (10.1016/j.geomphys.2017.02.005_br000140) 1987; vol. 3 Hijazi (10.1016/j.geomphys.2017.02.005_br000155) 2006; 253 Hijazi (10.1016/j.geomphys.2017.02.005_br000160) 2001 |
| References_xml | – year: 2002 ident: 10.1016/j.geomphys.2017.02.005_br000175 – volume: 15 start-page: 410 year: 1997 ident: 10.1016/j.geomphys.2017.02.005_br000065 article-title: Surfaces of revolution in terms of solitons publication-title: Ann. Global Anal. Geom. doi: 10.1023/A:1006596720792 – volume: 18 start-page: 61 year: 2000 ident: 10.1016/j.geomphys.2017.02.005_br000060 article-title: Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy publication-title: Ann. Global Anal. Geom. doi: 10.1023/A:1006608908156 – volume: 361 start-page: 6255 issue: 12 year: 2009 ident: 10.1016/j.geomphys.2017.02.005_br000005 article-title: Isometric immersions into Sn×R and Hn×R and applications to minimal surfaces publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-09-04555-3 – volume: 253 start-page: 821 issue: 4 year: 2006 ident: 10.1016/j.geomphys.2017.02.005_br000155 article-title: Spinc geometry of Kähler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds publication-title: Math. Z. doi: 10.1007/s00209-006-0936-8 – volume: 151 start-page: 1 year: 2011 ident: 10.1016/j.geomphys.2017.02.005_br000015 article-title: Isometric immersions into products of space forms publication-title: Geom. Dedicata doi: 10.1007/s10711-010-9515-6 – start-page: 261 year: 2013 ident: 10.1016/j.geomphys.2017.02.005_br000105 article-title: The spinor representation formula in 3 and 4 dimensions – volume: 75 start-page: 668 year: 2000 ident: 10.1016/j.geomphys.2017.02.005_br000115 article-title: Weierstrass representation of Lagrangian surfaces in four-dimensional space using spinors and quaternions publication-title: Comment. Math. Helv. doi: 10.1007/s000140050144 – volume: 4 start-page: 291 year: 1986 ident: 10.1016/j.geomphys.2017.02.005_br000195 article-title: An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature publication-title: Ann. Global Anal. Geom. doi: 10.1007/BF00128050 – volume: 90 start-page: 472 year: 2005 ident: 10.1016/j.geomphys.2017.02.005_br000120 article-title: Hamiltonian stationary tori in the complex projective plane publication-title: Proc. Lond. Math. Soc. doi: 10.1112/S002461150401500X – year: 2015 ident: 10.1016/j.geomphys.2017.02.005_br000165 article-title: A spinorial approach to Riemannian and conformal geometry publication-title: EMS Monogr. Math. doi: 10.4171/136 – volume: vol. 69 year: 2007 ident: 10.1016/j.geomphys.2017.02.005_br000130 – volume: vol. 23 start-page: 9 year: 2005 ident: 10.1016/j.geomphys.2017.02.005_br000040 article-title: Surfaces in S3 and H3 via spinors – year: 2001 ident: 10.1016/j.geomphys.2017.02.005_br000160 article-title: Spectral properties of the Dirac operator and geometrical structures – volume: 57 start-page: 1431 issue: 3 year: 2008 ident: 10.1016/j.geomphys.2017.02.005_br000025 article-title: An existence theorem for G-structure preserving affine immersions publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.2008.57.3281 – start-page: 143 year: 1998 ident: 10.1016/j.geomphys.2017.02.005_br000035 article-title: On the spinor representation of surfaces in Euclidean 3-space publication-title: J. Geom. Phys. doi: 10.1016/S0393-0440(98)00018-7 – volume: 28 start-page: 205 issue: 2 year: 2010 ident: 10.1016/j.geomphys.2017.02.005_br000075 article-title: Isometric immersions of hypersurfaces into 4-dimensional manifolds via spinors publication-title: Differential Geom. Appl. doi: 10.1016/j.difgeo.2009.10.005 – volume: 58 start-page: 683 issue: 6 year: 2008 ident: 10.1016/j.geomphys.2017.02.005_br000045 article-title: A spinorial representation for Lorentzian surfaces in R2,1 publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2008.01.007 – volume: 187 start-page: 417 year: 1997 ident: 10.1016/j.geomphys.2017.02.005_br000200 article-title: Parallel and killing spinors on Spinc manifolds publication-title: Comm. Math. Phys. doi: 10.1007/s002200050142 – volume: 90 start-page: 55 year: 2015 ident: 10.1016/j.geomphys.2017.02.005_br000020 article-title: A fundamental theorem for hypersurfaces in semi-Riemannian warped products publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2015.01.002 – volume: 44 start-page: 433 issue: 4 year: 2013 ident: 10.1016/j.geomphys.2017.02.005_br000085 article-title: Spinorial representation of surfaces in four-dimensional space forms publication-title: Ann. Global Anal. Geom. doi: 10.1007/s10455-013-9375-z – volume: 14 start-page: 185 issue: 3 year: 2011 ident: 10.1016/j.geomphys.2017.02.005_br000050 article-title: Spinorial characterization of surfaces in pseudo-Riemannian space forms publication-title: Math. Phys. Anal. Geom. doi: 10.1007/s11040-011-9093-3 – ident: 10.1016/j.geomphys.2017.02.005_br000055 – volume: 56 start-page: 1235 year: 2006 ident: 10.1016/j.geomphys.2017.02.005_br000110 article-title: Surfaces in the four-space and the Davey–Stewartson equations publication-title: J. Geom Phys. doi: 10.1016/j.geomphys.2005.06.013 – volume: vol. 3 year: 1987 ident: 10.1016/j.geomphys.2017.02.005_br000140 – volume: 42 start-page: 421 issue: 3 year: 2012 ident: 10.1016/j.geomphys.2017.02.005_br000080 article-title: Hypersurfaces of spinc manifolds and Lawson type correspondence publication-title: Ann. Global Anal. Geom. doi: 10.1007/s10455-012-9321-5 – volume: 21 start-page: 635 issue: 4 year: 2014 ident: 10.1016/j.geomphys.2017.02.005_br000100 article-title: Spinors and isometric immersions of surfaces into 4-dimensional products publication-title: Bull. Belg. Math. Soc. Simon Stevin doi: 10.36045/bbms/1414091007 – volume: 14 start-page: 1 year: 1974 ident: 10.1016/j.geomphys.2017.02.005_br000190 article-title: Harmonic spinors publication-title: Adv. Math. doi: 10.1016/0001-8708(74)90021-8 – volume: 82 start-page: 87 year: 2007 ident: 10.1016/j.geomphys.2017.02.005_br000010 article-title: Isometric immersions into 3-dimensional homogeneous manifolds publication-title: Comment. Math. Helv. doi: 10.4171/CMH/86 – volume: 95 start-page: 74 year: 2015 ident: 10.1016/j.geomphys.2017.02.005_br000095 article-title: Spinor representation of Lorentzian surfaces in R2,2 publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2015.05.002 – ident: 10.1016/j.geomphys.2017.02.005_br000150 – volume: 74 start-page: 289 year: 2013 ident: 10.1016/j.geomphys.2017.02.005_br000090 article-title: On the spinorial representation of spacelike surfaces into 4-dimensional Minkowski space publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2013.08.006 – volume: 16 start-page: 573 year: 1998 ident: 10.1016/j.geomphys.2017.02.005_br000170 article-title: Extrinsic bounds for eigenvalues of the Dirac operator publication-title: Ann. Global Anal. Geom. doi: 10.1023/A:1006550532236 – year: 2006 ident: 10.1016/j.geomphys.2017.02.005_br000135 article-title: Lectures on Kähler manifolds doi: 10.4171/025 – volume: vol. 1976 year: 2009 ident: 10.1016/j.geomphys.2017.02.005_br000185 article-title: The Dirac spectrum – volume: vol. 38 year: 1989 ident: 10.1016/j.geomphys.2017.02.005_br000145 – volume: 60 start-page: 419 year: 2010 ident: 10.1016/j.geomphys.2017.02.005_br000070 article-title: Spinorial characterization of surfaces into 3-dimensional homogeneous manifolds publication-title: J. Geom. Phys doi: 10.1016/j.geomphys.2010.03.007 – volume: 8 start-page: 1 issue: 6 year: 2011 ident: 10.1016/j.geomphys.2017.02.005_br000030 article-title: Isometric immersion into Lorentzian products publication-title: Int. J. Geom. Methods Mod. Phys. doi: 10.1142/S0219887811005695 – volume: 56 start-page: 931 year: 2007 ident: 10.1016/j.geomphys.2017.02.005_br000125 article-title: Hamiltonian stability and index of minimal Lagrangian surfaces of the complex projective plan publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.2007.56.2818 – volume: 13 start-page: 533 issue: 5 year: 2002 ident: 10.1016/j.geomphys.2017.02.005_br000180 article-title: On eigenvalue estimates for the submanifold Dirac operator publication-title: Int. J. Math. doi: 10.1142/S0129167X0200140X |
| SSID | ssj0006491 |
| Score | 2.0872421 |
| Snippet | The complex projective space CP 2 of complex dimension 2 has a Spin c structure carrying Kählerian Killing spinors. The restriction of one of these Kählerian... |
| SourceID | hal crossref |
| SourceType | Open Access Repository Enrichment Source Index Database |
| StartPage | 316 |
| SubjectTerms | Differential Geometry Mathematics |
| Title | Complex and Lagrangian surfaces of the complex projective plane via Kählerian Killing Spin c spinors |
| URI | https://hal.science/hal-01338103 |
| Volume | 116 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0393-0440 databaseCode: AIEXJ dateStart: 20061201 customDbUrl: isFulltext: true dateEnd: 20180131 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006491 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagBakceBQqyksW4rYKOLGTOMcVKipsWVVVkfYW-blsKclqd7vaH8Q_4Y8xjp2kUAT0wCUPK7aczGePM_5mBqFXJE9YxriICKMiYik3EedSRTrOCp0qQBHXTbKJfDzmk0lxHKhDyyadQF5VfLMp5v9V1FAGwnaus9cQd9coFMA1CB2OIHY4_pPg3Qg_N5tmV-BITEEXTd0gXl4sbEO_CqQAFR4LphhHIJo74utgPRODUbN_zlxmZFd3NAuRu-eOtT5YwqkOu0BX17VTU381q4WP6-QNJ926fSy-eEid1NOeFnxSe-OO89UOnmnBDhHnPV-q9b9yTEDmgy91c2t8eXak4c4rWupNHVfmcG9OOHvtuut66fh3uQ-smvZaq92p_0WZdRTDlr12VrbtlK6dkiRlE_N2O8nTAqbB7eH7g8mHTnlnzCdZbF_mklP573v003rm5ufWHN8sT07vo7vh--Ohx8MDdMNUu-he-MfAYQZf7qI7H7s4vXB3-9jL5yEyATYYpIZ72OAWNri2GCriABvcwwY3sMEAGzz6_i1ABgfIYAcZrHCAzCP06d3B6dvDKKTgiJSL9BfpROTaKpmplAuRWSMIDHkBo5sKLimRXOfUqlQqKmKZSMmIpjoxJostI8LQPbRV1ZV5jDCLbUa1FpZbydKCCMkLozILv9SJ0Fm-j9L2Q5YqxKd3aVLOyz-Lch-96erNfYSWv9Z4CXLqHnYB1g-HR6UrI85kExO6jp9cu9mnaKcfF8_Q1mpxYZ6jW2q9mi0XLwLQfgAHeJ4z |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex+and+Lagrangian+surfaces+of+the+complex+projective+plane+via+K%C3%A4hlerian+Killing+Spin+c+spinors&rft.jtitle=Journal+of+geometry+and+physics&rft.au=Nakad%2C+Roger&rft.au=Roth%2C+Julien&rft.date=2017-06-01&rft.issn=0393-0440&rft.volume=116&rft.spage=316&rft.epage=329&rft_id=info:doi/10.1016%2Fj.geomphys.2017.02.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geomphys_2017_02_005 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0393-0440&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0393-0440&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0393-0440&client=summon |