Complex and Lagrangian surfaces of the complex projective plane via Kählerian Killing Spin c spinors

The complex projective space CP 2 of complex dimension 2 has a Spin c structure carrying Kählerian Killing spinors. The restriction of one of these Kählerian Killing spinors to a Lagrangian or complex surface M 2 characterizes the isometric immersion of M into CP 2 .

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of geometry and physics Ročník 116; s. 316 - 329
Hlavní autoři: Nakad, Roger, Roth, Julien
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier 01.06.2017
Témata:
ISSN:0393-0440
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The complex projective space CP 2 of complex dimension 2 has a Spin c structure carrying Kählerian Killing spinors. The restriction of one of these Kählerian Killing spinors to a Lagrangian or complex surface M 2 characterizes the isometric immersion of M into CP 2 .
AbstractList The complex projective space CP 2 of complex dimension 2 has a Spin c structure carrying Kählerian Killing spinors. The restriction of one of these Kählerian Killing spinors to a Lagrangian or complex surface M 2 characterizes the isometric immersion of M into CP 2 .
Author Nakad, Roger
Roth, Julien
Author_xml – sequence: 1
  givenname: Roger
  surname: Nakad
  fullname: Nakad, Roger
– sequence: 2
  givenname: Julien
  surname: Roth
  fullname: Roth, Julien
BackLink https://hal.science/hal-01338103$$DView record in HAL
BookMark eNqFkLFOwzAQhj0UibbwCsgrQ8I5TtNUYqkqoKiRGIDZujhO4sh1IjtU9H14E16MRKULC9N_On3fnfTPyMS2VhFywyBkwJK7JqxUu-_qow8jYMsQohBgMSFT4CseQBzDJZl53wBAEq_YlKjNgBv1SdEWNMPKoa00Wuo_XIlSedqWtK8Vlb9Y59pGyV4fFO0MWkUPGunu-6s2yo3eThujbUVfO22ppH6I1vkrclGi8er6N-fk_fHhbbMNspen5806CyTjMQuKCJdFKfNELlLEpFQIUg5DnHJMcw55Wix5KRe55MjyKM9jKHgRKZWwMgZUfE5uT3drNKJzeo_uKFrUYrvOxLgDxnnKgB_YwN6fWOla750qhdQ99rq1vUNtBAMxVioaca5UjJUKiMRQ6aAnf_Tzv3_EHzBnhok
CitedBy_id crossref_primary_10_1007_s00006_019_0970_3
crossref_primary_10_1007_s10455_021_09802_4
crossref_primary_10_1007_s00006_022_01205_3
Cites_doi 10.1023/A:1006596720792
10.1023/A:1006608908156
10.1090/S0002-9947-09-04555-3
10.1007/s00209-006-0936-8
10.1007/s10711-010-9515-6
10.1007/s000140050144
10.1007/BF00128050
10.1112/S002461150401500X
10.4171/136
10.1512/iumj.2008.57.3281
10.1016/S0393-0440(98)00018-7
10.1016/j.difgeo.2009.10.005
10.1016/j.geomphys.2008.01.007
10.1007/s002200050142
10.1016/j.geomphys.2015.01.002
10.1007/s10455-013-9375-z
10.1007/s11040-011-9093-3
10.1016/j.geomphys.2005.06.013
10.1007/s10455-012-9321-5
10.36045/bbms/1414091007
10.1016/0001-8708(74)90021-8
10.4171/CMH/86
10.1016/j.geomphys.2015.05.002
10.1016/j.geomphys.2013.08.006
10.1023/A:1006550532236
10.4171/025
10.1016/j.geomphys.2010.03.007
10.1142/S0219887811005695
10.1512/iumj.2007.56.2818
10.1142/S0129167X0200140X
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.geomphys.2017.02.005
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EndPage 329
ExternalDocumentID oai:HAL:hal-01338103v1
10_1016_j_geomphys_2017_02_005
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9DU
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABAOU
ABFNM
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADGUI
ADIYS
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CITATION
CS3
D-I
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HMJ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LZ3
M25
M38
M41
MHUIS
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SHN
SME
SPC
SPCBC
SPD
SPG
SSQ
SSW
SSZ
T5K
WUQ
XPP
~G-
~HD
1XC
VOOES
ID FETCH-LOGICAL-c1341-d2a7dfcb6c58aa6fea0ccaa6483a8b30b8d73fc5bc3a1b2bb40d3d2ee61f40ae3
ISSN 0393-0440
IngestDate Tue Oct 14 20:40:55 EDT 2025
Tue Nov 18 21:52:55 EST 2025
Sat Nov 29 02:17:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1341-d2a7dfcb6c58aa6fea0ccaa6483a8b30b8d73fc5bc3a1b2bb40d3d2ee61f40ae3
ORCID 0000-0003-0880-5674
OpenAccessLink https://hal.science/hal-01338103
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_01338103v1
crossref_citationtrail_10_1016_j_geomphys_2017_02_005
crossref_primary_10_1016_j_geomphys_2017_02_005
PublicationCentury 2000
PublicationDate 2017-06-00
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-00
PublicationDecade 2010
PublicationTitle Journal of geometry and physics
PublicationYear 2017
Publisher Elsevier
Publisher_xml – name: Elsevier
References Bayard (10.1016/j.geomphys.2017.02.005_br000085) 2013; 44
Roth (10.1016/j.geomphys.2017.02.005_br000100) 2014; 21
Lawn (10.1016/j.geomphys.2017.02.005_br000075) 2010; 28
Bayard (10.1016/j.geomphys.2017.02.005_br000090) 2013; 74
Morel (10.1016/j.geomphys.2017.02.005_br000040) 2005; vol. 23
Lawn (10.1016/j.geomphys.2017.02.005_br000045) 2008; 58
10.1016/j.geomphys.2017.02.005_br000055
Taimanov (10.1016/j.geomphys.2017.02.005_br000110) 2006; 56
Moroianu (10.1016/j.geomphys.2017.02.005_br000130) 2007; vol. 69
Ballmann (10.1016/j.geomphys.2017.02.005_br000135) 2006
Lawson (10.1016/j.geomphys.2017.02.005_br000145) 1989; vol. 38
10.1016/j.geomphys.2017.02.005_br000150
Taimanov (10.1016/j.geomphys.2017.02.005_br000065) 1997; 15
Ginoux (10.1016/j.geomphys.2017.02.005_br000180) 2002; 13
Daniel (10.1016/j.geomphys.2017.02.005_br000005) 2009; 361
Lawn (10.1016/j.geomphys.2017.02.005_br000050) 2011; 14
Hélein (10.1016/j.geomphys.2017.02.005_br000120) 2005; 90
Romon (10.1016/j.geomphys.2017.02.005_br000105) 2013
Daniel (10.1016/j.geomphys.2017.02.005_br000010) 2007; 82
Lawn (10.1016/j.geomphys.2017.02.005_br000020) 2015; 90
Ginoux (10.1016/j.geomphys.2017.02.005_br000185) 2009; vol. 1976
Urbano (10.1016/j.geomphys.2017.02.005_br000125) 2007; 56
Nakad (10.1016/j.geomphys.2017.02.005_br000080) 2012; 42
Kowalczyk (10.1016/j.geomphys.2017.02.005_br000015) 2011; 151
Moroianu (10.1016/j.geomphys.2017.02.005_br000200) 1997; 187
Bourguignon (10.1016/j.geomphys.2017.02.005_br000165) 2015
Hitchin (10.1016/j.geomphys.2017.02.005_br000190) 1974; 14
Friedrich (10.1016/j.geomphys.2017.02.005_br000035) 1998
Ginoux (10.1016/j.geomphys.2017.02.005_br000175) 2002
Roth (10.1016/j.geomphys.2017.02.005_br000070) 2010; 60
Hélein (10.1016/j.geomphys.2017.02.005_br000115) 2000; 75
Kirchberg (10.1016/j.geomphys.2017.02.005_br000195) 1986; 4
Piccione (10.1016/j.geomphys.2017.02.005_br000025) 2008; 57
Bayard (10.1016/j.geomphys.2017.02.005_br000095) 2015; 95
Roth (10.1016/j.geomphys.2017.02.005_br000030) 2011; 8
Bär (10.1016/j.geomphys.2017.02.005_br000170) 1998; 16
Konopelchenko (10.1016/j.geomphys.2017.02.005_br000060) 2000; 18
Besse (10.1016/j.geomphys.2017.02.005_br000140) 1987; vol. 3
Hijazi (10.1016/j.geomphys.2017.02.005_br000155) 2006; 253
Hijazi (10.1016/j.geomphys.2017.02.005_br000160) 2001
References_xml – year: 2002
  ident: 10.1016/j.geomphys.2017.02.005_br000175
– volume: 15
  start-page: 410
  year: 1997
  ident: 10.1016/j.geomphys.2017.02.005_br000065
  article-title: Surfaces of revolution in terms of solitons
  publication-title: Ann. Global Anal. Geom.
  doi: 10.1023/A:1006596720792
– volume: 18
  start-page: 61
  year: 2000
  ident: 10.1016/j.geomphys.2017.02.005_br000060
  article-title: Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy
  publication-title: Ann. Global Anal. Geom.
  doi: 10.1023/A:1006608908156
– volume: 361
  start-page: 6255
  issue: 12
  year: 2009
  ident: 10.1016/j.geomphys.2017.02.005_br000005
  article-title: Isometric immersions into Sn×R and Hn×R and applications to minimal surfaces
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-09-04555-3
– volume: 253
  start-page: 821
  issue: 4
  year: 2006
  ident: 10.1016/j.geomphys.2017.02.005_br000155
  article-title: Spinc geometry of Kähler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds
  publication-title: Math. Z.
  doi: 10.1007/s00209-006-0936-8
– volume: 151
  start-page: 1
  year: 2011
  ident: 10.1016/j.geomphys.2017.02.005_br000015
  article-title: Isometric immersions into products of space forms
  publication-title: Geom. Dedicata
  doi: 10.1007/s10711-010-9515-6
– start-page: 261
  year: 2013
  ident: 10.1016/j.geomphys.2017.02.005_br000105
  article-title: The spinor representation formula in 3 and 4 dimensions
– volume: 75
  start-page: 668
  year: 2000
  ident: 10.1016/j.geomphys.2017.02.005_br000115
  article-title: Weierstrass representation of Lagrangian surfaces in four-dimensional space using spinors and quaternions
  publication-title: Comment. Math. Helv.
  doi: 10.1007/s000140050144
– volume: 4
  start-page: 291
  year: 1986
  ident: 10.1016/j.geomphys.2017.02.005_br000195
  article-title: An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature
  publication-title: Ann. Global Anal. Geom.
  doi: 10.1007/BF00128050
– volume: 90
  start-page: 472
  year: 2005
  ident: 10.1016/j.geomphys.2017.02.005_br000120
  article-title: Hamiltonian stationary tori in the complex projective plane
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/S002461150401500X
– year: 2015
  ident: 10.1016/j.geomphys.2017.02.005_br000165
  article-title: A spinorial approach to Riemannian and conformal geometry
  publication-title: EMS Monogr. Math.
  doi: 10.4171/136
– volume: vol. 69
  year: 2007
  ident: 10.1016/j.geomphys.2017.02.005_br000130
– volume: vol. 23
  start-page: 9
  year: 2005
  ident: 10.1016/j.geomphys.2017.02.005_br000040
  article-title: Surfaces in S3 and H3 via spinors
– year: 2001
  ident: 10.1016/j.geomphys.2017.02.005_br000160
  article-title: Spectral properties of the Dirac operator and geometrical structures
– volume: 57
  start-page: 1431
  issue: 3
  year: 2008
  ident: 10.1016/j.geomphys.2017.02.005_br000025
  article-title: An existence theorem for G-structure preserving affine immersions
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.2008.57.3281
– start-page: 143
  year: 1998
  ident: 10.1016/j.geomphys.2017.02.005_br000035
  article-title: On the spinor representation of surfaces in Euclidean 3-space
  publication-title: J. Geom. Phys.
  doi: 10.1016/S0393-0440(98)00018-7
– volume: 28
  start-page: 205
  issue: 2
  year: 2010
  ident: 10.1016/j.geomphys.2017.02.005_br000075
  article-title: Isometric immersions of hypersurfaces into 4-dimensional manifolds via spinors
  publication-title: Differential Geom. Appl.
  doi: 10.1016/j.difgeo.2009.10.005
– volume: 58
  start-page: 683
  issue: 6
  year: 2008
  ident: 10.1016/j.geomphys.2017.02.005_br000045
  article-title: A spinorial representation for Lorentzian surfaces in R2,1
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2008.01.007
– volume: 187
  start-page: 417
  year: 1997
  ident: 10.1016/j.geomphys.2017.02.005_br000200
  article-title: Parallel and killing spinors on Spinc manifolds
  publication-title: Comm. Math. Phys.
  doi: 10.1007/s002200050142
– volume: 90
  start-page: 55
  year: 2015
  ident: 10.1016/j.geomphys.2017.02.005_br000020
  article-title: A fundamental theorem for hypersurfaces in semi-Riemannian warped products
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2015.01.002
– volume: 44
  start-page: 433
  issue: 4
  year: 2013
  ident: 10.1016/j.geomphys.2017.02.005_br000085
  article-title: Spinorial representation of surfaces in four-dimensional space forms
  publication-title: Ann. Global Anal. Geom.
  doi: 10.1007/s10455-013-9375-z
– volume: 14
  start-page: 185
  issue: 3
  year: 2011
  ident: 10.1016/j.geomphys.2017.02.005_br000050
  article-title: Spinorial characterization of surfaces in pseudo-Riemannian space forms
  publication-title: Math. Phys. Anal. Geom.
  doi: 10.1007/s11040-011-9093-3
– ident: 10.1016/j.geomphys.2017.02.005_br000055
– volume: 56
  start-page: 1235
  year: 2006
  ident: 10.1016/j.geomphys.2017.02.005_br000110
  article-title: Surfaces in the four-space and the Davey–Stewartson equations
  publication-title: J. Geom Phys.
  doi: 10.1016/j.geomphys.2005.06.013
– volume: vol. 3
  year: 1987
  ident: 10.1016/j.geomphys.2017.02.005_br000140
– volume: 42
  start-page: 421
  issue: 3
  year: 2012
  ident: 10.1016/j.geomphys.2017.02.005_br000080
  article-title: Hypersurfaces of spinc manifolds and Lawson type correspondence
  publication-title: Ann. Global Anal. Geom.
  doi: 10.1007/s10455-012-9321-5
– volume: 21
  start-page: 635
  issue: 4
  year: 2014
  ident: 10.1016/j.geomphys.2017.02.005_br000100
  article-title: Spinors and isometric immersions of surfaces into 4-dimensional products
  publication-title: Bull. Belg. Math. Soc. Simon Stevin
  doi: 10.36045/bbms/1414091007
– volume: 14
  start-page: 1
  year: 1974
  ident: 10.1016/j.geomphys.2017.02.005_br000190
  article-title: Harmonic spinors
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(74)90021-8
– volume: 82
  start-page: 87
  year: 2007
  ident: 10.1016/j.geomphys.2017.02.005_br000010
  article-title: Isometric immersions into 3-dimensional homogeneous manifolds
  publication-title: Comment. Math. Helv.
  doi: 10.4171/CMH/86
– volume: 95
  start-page: 74
  year: 2015
  ident: 10.1016/j.geomphys.2017.02.005_br000095
  article-title: Spinor representation of Lorentzian surfaces in R2,2
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2015.05.002
– ident: 10.1016/j.geomphys.2017.02.005_br000150
– volume: 74
  start-page: 289
  year: 2013
  ident: 10.1016/j.geomphys.2017.02.005_br000090
  article-title: On the spinorial representation of spacelike surfaces into 4-dimensional Minkowski space
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2013.08.006
– volume: 16
  start-page: 573
  year: 1998
  ident: 10.1016/j.geomphys.2017.02.005_br000170
  article-title: Extrinsic bounds for eigenvalues of the Dirac operator
  publication-title: Ann. Global Anal. Geom.
  doi: 10.1023/A:1006550532236
– year: 2006
  ident: 10.1016/j.geomphys.2017.02.005_br000135
  article-title: Lectures on Kähler manifolds
  doi: 10.4171/025
– volume: vol. 1976
  year: 2009
  ident: 10.1016/j.geomphys.2017.02.005_br000185
  article-title: The Dirac spectrum
– volume: vol. 38
  year: 1989
  ident: 10.1016/j.geomphys.2017.02.005_br000145
– volume: 60
  start-page: 419
  year: 2010
  ident: 10.1016/j.geomphys.2017.02.005_br000070
  article-title: Spinorial characterization of surfaces into 3-dimensional homogeneous manifolds
  publication-title: J. Geom. Phys
  doi: 10.1016/j.geomphys.2010.03.007
– volume: 8
  start-page: 1
  issue: 6
  year: 2011
  ident: 10.1016/j.geomphys.2017.02.005_br000030
  article-title: Isometric immersion into Lorentzian products
  publication-title: Int. J. Geom. Methods Mod. Phys.
  doi: 10.1142/S0219887811005695
– volume: 56
  start-page: 931
  year: 2007
  ident: 10.1016/j.geomphys.2017.02.005_br000125
  article-title: Hamiltonian stability and index of minimal Lagrangian surfaces of the complex projective plan
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.2007.56.2818
– volume: 13
  start-page: 533
  issue: 5
  year: 2002
  ident: 10.1016/j.geomphys.2017.02.005_br000180
  article-title: On eigenvalue estimates for the submanifold Dirac operator
  publication-title: Int. J. Math.
  doi: 10.1142/S0129167X0200140X
SSID ssj0006491
Score 2.0872421
Snippet The complex projective space CP 2 of complex dimension 2 has a Spin c structure carrying Kählerian Killing spinors. The restriction of one of these Kählerian...
SourceID hal
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 316
SubjectTerms Differential Geometry
Mathematics
Title Complex and Lagrangian surfaces of the complex projective plane via Kählerian Killing Spin c spinors
URI https://hal.science/hal-01338103
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0393-0440
  databaseCode: AIEXJ
  dateStart: 20061201
  customDbUrl:
  isFulltext: true
  dateEnd: 20180131
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006491
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagBakceBQqyksW4rYKOLGTOMcVKipsWVVVkfYW-blsKclqd7vaH8Q_4Y8xjp2kUAT0wCUPK7aczGePM_5mBqFXJE9YxriICKMiYik3EedSRTrOCp0qQBHXTbKJfDzmk0lxHKhDyyadQF5VfLMp5v9V1FAGwnaus9cQd9coFMA1CB2OIHY4_pPg3Qg_N5tmV-BITEEXTd0gXl4sbEO_CqQAFR4LphhHIJo74utgPRODUbN_zlxmZFd3NAuRu-eOtT5YwqkOu0BX17VTU381q4WP6-QNJ926fSy-eEid1NOeFnxSe-OO89UOnmnBDhHnPV-q9b9yTEDmgy91c2t8eXak4c4rWupNHVfmcG9OOHvtuut66fh3uQ-smvZaq92p_0WZdRTDlr12VrbtlK6dkiRlE_N2O8nTAqbB7eH7g8mHTnlnzCdZbF_mklP573v003rm5ufWHN8sT07vo7vh--Ohx8MDdMNUu-he-MfAYQZf7qI7H7s4vXB3-9jL5yEyATYYpIZ72OAWNri2GCriABvcwwY3sMEAGzz6_i1ABgfIYAcZrHCAzCP06d3B6dvDKKTgiJSL9BfpROTaKpmplAuRWSMIDHkBo5sKLimRXOfUqlQqKmKZSMmIpjoxJostI8LQPbRV1ZV5jDCLbUa1FpZbydKCCMkLozILv9SJ0Fm-j9L2Q5YqxKd3aVLOyz-Lch-96erNfYSWv9Z4CXLqHnYB1g-HR6UrI85kExO6jp9cu9mnaKcfF8_Q1mpxYZ6jW2q9mi0XLwLQfgAHeJ4z
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex+and+Lagrangian+surfaces+of+the+complex+projective+plane+via+K%C3%A4hlerian+Killing+Spin+c+spinors&rft.jtitle=Journal+of+geometry+and+physics&rft.au=Nakad%2C+Roger&rft.au=Roth%2C+Julien&rft.date=2017-06-01&rft.issn=0393-0440&rft.volume=116&rft.spage=316&rft.epage=329&rft_id=info:doi/10.1016%2Fj.geomphys.2017.02.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geomphys_2017_02_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0393-0440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0393-0440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0393-0440&client=summon