Identification of Twitter Bots Based on an Explainable Machine Learning Framework: The US 2020 Elections Case Study
Twitter is one of the most popular social networks attracting millions of users, while a considerable proportion of online discourse is captured. It provides a simple usage framework with short messages and an efficient application programming interface (API) enabling the research community to study...
Uložené v:
| Vydané v: | Proceedings of the International AAAI Conference on Web and Social Media Ročník 16; s. 956 - 967 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
31.05.2022
|
| ISSN: | 2162-3449, 2334-0770 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Twitter is one of the most popular social networks attracting millions of users, while a considerable proportion of online discourse is captured. It provides a simple usage framework with short messages and
an efficient application programming interface (API) enabling the research community to study and analyze several aspects of this social network. However, the Twitter usage simplicity can lead to malicious
handling by various bots. The malicious handling phenomenon expands in online discourse, especially during the electoral periods, where except the legitimate bots used for dissemination and communication
purposes, the goal is to manipulate the public opinion and the electorate towards a certain direction, specific ideology, or political party. This paper focuses on the design of a novel system for identifying
Twitter bots based on labeled Twitter data. To this end, a supervised machine learning (ML) framework is adopted using an Extreme Gradient Boosting (XGBoost) algorithm, where the hyper-parameters are tuned via cross-validation.
Our study also deploys Shapley Additive Explanations (SHAP) for explaining the ML model predictions by calculating feature importance, using the game theoretic-based Shapley values.
Experimental evaluation on distinct Twitter datasets demonstrate the superiority of our approach, in terms of bot detection accuracy, when compared against a recent state-of-the-art Twitter bot detection method. |
|---|---|
| AbstractList | Twitter is one of the most popular social networks attracting millions of users, while a considerable proportion of online discourse is captured. It provides a simple usage framework with short messages and
an efficient application programming interface (API) enabling the research community to study and analyze several aspects of this social network. However, the Twitter usage simplicity can lead to malicious
handling by various bots. The malicious handling phenomenon expands in online discourse, especially during the electoral periods, where except the legitimate bots used for dissemination and communication
purposes, the goal is to manipulate the public opinion and the electorate towards a certain direction, specific ideology, or political party. This paper focuses on the design of a novel system for identifying
Twitter bots based on labeled Twitter data. To this end, a supervised machine learning (ML) framework is adopted using an Extreme Gradient Boosting (XGBoost) algorithm, where the hyper-parameters are tuned via cross-validation.
Our study also deploys Shapley Additive Explanations (SHAP) for explaining the ML model predictions by calculating feature importance, using the game theoretic-based Shapley values.
Experimental evaluation on distinct Twitter datasets demonstrate the superiority of our approach, in terms of bot detection accuracy, when compared against a recent state-of-the-art Twitter bot detection method. |
| Author | Antonakaki, Despoina Ioannidis, Sotiris Shevtsov, Alexander Tzagkarakis, Christos |
| Author_xml | – sequence: 1 givenname: Alexander surname: Shevtsov fullname: Shevtsov, Alexander – sequence: 2 givenname: Christos surname: Tzagkarakis fullname: Tzagkarakis, Christos – sequence: 3 givenname: Despoina surname: Antonakaki fullname: Antonakaki, Despoina – sequence: 4 givenname: Sotiris surname: Ioannidis fullname: Ioannidis, Sotiris |
| BookMark | eNp9kEFPwjAYhhuDiYj8AG_9A8N27brOmxBAEowH4Lx07TdpHB1pq8i_d0xPHjx9b_K9z3t4btHAtQ4QuqdkQgUpHqw-hcPkkwpLJ7RgvLhCw5QxnpA8J4MuU5EmjPPiBo1DsBXhPM9EkdEhCisDLtraahVt63Bb4-3JxggeT9sY8FQFMLh7KIfnX8dGWaeqBvCL0nvrAK9BeWfdG154dYBT698f8XYPeLfBKUkJnjegL8MBz7olvIkf5nyHrmvVBBj_3hHaLebb2XOyfl2uZk_rRFPGiqSWIJmpBEsrampuZFXximmRcmWMFBRSlSkpBEgJoIShkrNLz9BMd13GRoj-7GrfhuChLo_eHpQ_l5SUF3FlL67sxZW9uI7J_zDaxl5N9Mo2_5DfRgV4yQ |
| CitedBy_id | crossref_primary_10_1038_s41598_024_52471_z crossref_primary_10_11144_Javeriana_syp43_misr crossref_primary_10_1140_epjds_s13688_025_00545_x crossref_primary_10_1016_j_comnet_2024_110808 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1609/icwsm.v16i1.19349 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2334-0770 |
| EndPage | 967 |
| ExternalDocumentID | 10_1609_icwsm_v16i1_19349 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E |
| ID | FETCH-LOGICAL-c1339-f8e83db632b1df4d8bb4b3c624add861e2a5a866e88eea6d1843df4dd15c8bb33 |
| ISSN | 2162-3449 |
| IngestDate | Sat Nov 29 06:35:22 EST 2025 Tue Nov 18 22:49:43 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1339-f8e83db632b1df4d8bb4b3c624add861e2a5a866e88eea6d1843df4dd15c8bb33 |
| OpenAccessLink | https://ojs.aaai.org/index.php/ICWSM/article/download/19349/19121 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1609_icwsm_v16i1_19349 crossref_citationtrail_10_1609_icwsm_v16i1_19349 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-31 |
| PublicationDateYYYYMMDD | 2022-05-31 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the International AAAI Conference on Web and Social Media |
| PublicationYear | 2022 |
| SSID | ssib044756951 |
| Score | 1.7960337 |
| Snippet | Twitter is one of the most popular social networks attracting millions of users, while a considerable proportion of online discourse is captured. It provides a... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 956 |
| Title | Identification of Twitter Bots Based on an Explainable Machine Learning Framework: The US 2020 Elections Case Study |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2334-0770 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044756951 issn: 2162-3449 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFLbK4MAFgQAxGMgHTkQpTZw4DrcwikBi06S2sFtkx-4WrSRTk2UTB_42V56dxCRMk9iBS1S5zmva9_W9Z_t77yH0Ogx8QXwRuwRmuEHGmcszJlzFeZhFLAyUOTH9-iU6PGTHx_HRZPKrz4VpNlFRsKur-Py_qhrGQNk6dfYW6rZCYQBeg9LhCmqH6z8pvk29XXd7cToYXF7mtamFWNaV8x7clnQMB1nXOd702VMHhlWp-oKrJzqkbWlbPTFjtXB8CPuc-cbQt4rK2QdZhok4Ohs-sj6x6hkI433HJEk-D1IN9cN8U8KSSLtsYesvFqeqqauyGeXj2B2HH_zkjG91HDyolWAXColukczPeNuc-4MmBHf9ws3_odQdm2R766Ks820-2gaBFXR3gt9bS9-jvkuCtv7pVLVjhATuLGo7k1hzP7TXcUgHrj9uO4Nc8yrUFGXNs8vq-7TxaO5NIeztP2lYwfsvz2r5jnqlBUJSIyI1IlIj4g6660dhrLmIBz_nvSHURRhpbFqH2q_VnciDlLfXHmQQUw2Co-VD9KBb1eCkReMjNFHFY1SNkYjLNe6QiDUSsUEihjd4gQdIxB0ScY9EbJH4DgMO8WqBNQ6xxSHWOMQGh0_Q6uN8uf_J7Xp8uJlHSOyumWJECgr2wpPrQDIhAkEy6gfgeBn1lM9DzihVjCnFqdTtifQ86YVgUgQhT9FOURbqGcK-JIQKmlFwMbDsFyyIZ9KTigl99j7ju2jW_0pp1hXA131YNumN6tlFb-wt5231l5snP7_N5Bfo_h8U76GdenuhXqJ7WVPn1faVQcNvnVau_A |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Twitter+Bots+Based+on+an+Explainable+Machine+Learning+Framework%3A+The+US+2020+Elections+Case+Study&rft.jtitle=Proceedings+of+the+International+AAAI+Conference+on+Web+and+Social+Media&rft.au=Shevtsov%2C+Alexander&rft.au=Tzagkarakis%2C+Christos&rft.au=Antonakaki%2C+Despoina&rft.au=Ioannidis%2C+Sotiris&rft.date=2022-05-31&rft.issn=2162-3449&rft.eissn=2334-0770&rft.volume=16&rft.spage=956&rft.epage=967&rft_id=info:doi/10.1609%2Ficwsm.v16i1.19349&rft.externalDBID=n%2Fa&rft.externalDocID=10_1609_icwsm_v16i1_19349 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-3449&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-3449&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-3449&client=summon |