Image Restoration by Learning Morphological Opening-Closing Network
Mathematical morphology is a powerful tool for image processing tasks. The main difficulty in designing mathematical morphological algorithm is deciding the order of operators/filters and the corresponding structuring elements (SEs). In this work, we develop morphological network composed of alterna...
Uloženo v:
| Vydáno v: | Mathematical Morphology - Theory and Applications Ročník 4; číslo 1; s. 87 - 107 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
De Gruyter Open
01.01.2020
|
| Témata: | |
| ISSN: | 2353-3390, 2353-3390 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Mathematical morphology is a powerful tool for image processing tasks. The main difficulty in designing mathematical morphological algorithm is deciding the order of operators/filters and the corresponding structuring elements (SEs). In this work, we develop morphological network composed of alternate sequences of dilation and erosion layers, which depending on learned SEs, may form opening or closing layers. These layers in the right order along with linear combination (of their outputs) are useful in extracting image features and processing them. Structuring elements in the network are learned by back-propagation method guided by minimization of the loss function. Efficacy of the proposed network is established by applying it to two interesting image restoration problems, namely
and
. Results are comparable to that of many state-of-the-art algorithms for most of the images. It is also worth mentioning that the number of network parameters to handle is much less than that of popular convolutional neural network for similar tasks. The source code can be found here |
|---|---|
| AbstractList | Mathematical morphology is a powerful tool for image processing tasks. The main difficulty in designing mathematical morphological algorithm is deciding the order of operators/filters and the corresponding structuring elements (SEs). In this work, we develop morphological network composed of alternate sequences of dilation and erosion layers, which depending on learned SEs, may form opening or closing layers. These layers in the right order along with linear combination (of their outputs) are useful in extracting image features and processing them. Structuring elements in the network are learned by back-propagation method guided by minimization of the loss function. Efficacy of the proposed network is established by applying it to two interesting image restoration problems, namely
and
. Results are comparable to that of many state-of-the-art algorithms for most of the images. It is also worth mentioning that the number of network parameters to handle is much less than that of popular convolutional neural network for similar tasks. The source code can be found here Mathematical morphology is a powerful tool for image processing tasks. The main difficulty in designing mathematical morphological algorithm is deciding the order of operators/filters and the corresponding structuring elements (SEs). In this work, we develop morphological network composed of alternate sequences of dilation and erosion layers, which depending on learned SEs, may form opening or closing layers. These layers in the right order along with linear combination (of their outputs) are useful in extracting image features and processing them. Structuring elements in the network are learned by back-propagation method guided by minimization of the loss function. Efficacy of the proposed network is established by applying it to two interesting image restoration problems, namely de-raining and de-hazing . Results are comparable to that of many state-of-the-art algorithms for most of the images. It is also worth mentioning that the number of network parameters to handle is much less than that of popular convolutional neural network for similar tasks. The source code can be found here https://github.com/ranjanZ/Mophological-Opening-Closing-Net |
| Author | Mondal, Ranjan Chanda, Bhabatosh Dey, Moni Shankar |
| Author_xml | – sequence: 1 givenname: Ranjan surname: Mondal fullname: Mondal, Ranjan email: ranjan15_r@isical.ac.in organization: Indian Statistical Institute,Kolkata, India – sequence: 2 givenname: Moni Shankar surname: Dey fullname: Dey, Moni Shankar email: msdey.iitb@gmail.com organization: Indian Institute of Technology,Bombay, India – sequence: 3 givenname: Bhabatosh surname: Chanda fullname: Chanda, Bhabatosh email: chanda@isical.ac.in organization: Indian Statistical Institute,Kolkata, India |
| BookMark | eNp1kE1Lw0AQhhepYK09e80fWLsfySbBkwS1hWhB9LxsNrNpNMmG3ZSSf29iPXjxNC_z8gzDc40Wne0AoVtK7mhEo02rhkOLGWEEE0r4BVoyHnHMeUoWf_IVWntfFyQMBeEpp0uU7VpVQfAGfrBODbXtgmIMclCuq7sqeLGuP9jGVrVWTbDvYd7irLF-bl9hOFn3dYMujWo8rH_nCn08Pb5nW5zvn3fZQ4415TzGCYEwKagRSVhq0MaIkqVaJJowEcUcmDYp0SWLgIrUxFFchEpRKgwD0DpVfIU257vaWe8dGNm7ulVulJTIWYP80SBnDXLWMBH3Z-KkmgFcCZU7jlOQn_bouunX_8iQJjH_BkFuZ6c |
| Cites_doi | 10.1117/12.976517 10.1007/978-3-319-46475-6_10 10.1007/978-3-540-71992-2_87 10.1109/ICCV.2015.169 10.1109/ICCV.2013.82 10.1109/CVPRW.2018.00137 10.1016/S0165-1684(99)00161-9 10.1109/CVPRW.2018.00119 10.1145/2651362 10.1109/CVPR.2016.299 10.1007/978-3-319-46478-7_34 10.1016/j.patcog.2020.107246 10.1109/TPAMI.2010.168 10.1109/CVPRW.2018.00135 10.1109/TIP.2015.2446191 10.1007/978-3-030-14085-4_21 10.1109/TIP.2016.2598681 10.1007/978-3-319-24574-4_28 10.1109/CVPR.2018.00337 10.1109/ICCV.2015.303 10.1007/978-3-662-03039-4_13 10.1109/ICCV.2015.388 10.1109/TIP.2003.819861 10.1109/ICIP.2004.1421765 10.1109/CVPR.2014.383 10.1109/ICDAR.2019.00020 10.1109/TIP.2017.2662206 10.1109/ICIP.2016.7532754 10.1201/9781420027822.ch14 10.1016/0734-189X(86)90004-6 10.1109/TIP.2018.2839891 10.1109/TIP.2017.2691802 10.1109/CVPR.2016.185 10.1109/34.67627 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1515/mathm-2020-0103 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2353-3390 |
| EndPage | 107 |
| ExternalDocumentID | 10_1515_mathm_2020_0103 10_1515_mathm_2020_01034187 |
| GroupedDBID | AAFWJ ALMA_UNASSIGNED_HOLDINGS AAYXX CITATION |
| ID | FETCH-LOGICAL-c1337-80e48b1f684dcecff6d29c68c026573e2cf90cd25e169f757b4aa116f2eecc9a3 |
| ISSN | 2353-3390 |
| IngestDate | Sat Nov 29 05:05:14 EST 2025 Sat Sep 06 17:01:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1337-80e48b1f684dcecff6d29c68c026573e2cf90cd25e169f757b4aa116f2eecc9a3 |
| OpenAccessLink | https://www.degruyter.com/doi/10.1515/mathm-2020-0103 |
| PageCount | 21 |
| ParticipantIDs | crossref_primary_10_1515_mathm_2020_0103 walterdegruyter_journals_10_1515_mathm_2020_01034187 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Mathematical Morphology - Theory and Applications |
| PublicationYear | 2020 |
| Publisher | De Gruyter Open |
| Publisher_xml | – name: De Gruyter Open |
| References | 2022042712261288296_j_mathm-2020-0103_ref_001_w2aab3b7c10b1b6b1ab1ab1Aa 2022042712261288296_j_mathm-2020-0103_ref_049_w2aab3b7c10b1b6b1ab1ac49Aa 2022042712261288296_j_mathm-2020-0103_ref_018_w2aab3b7c10b1b6b1ab1ac18Aa 2022042712261288296_j_mathm-2020-0103_ref_036_w2aab3b7c10b1b6b1ab1ac36Aa 2022042712261288296_j_mathm-2020-0103_ref_023_w2aab3b7c10b1b6b1ab1ac23Aa 2022042712261288296_j_mathm-2020-0103_ref_041_w2aab3b7c10b1b6b1ab1ac41Aa 2022042712261288296_j_mathm-2020-0103_ref_010_w2aab3b7c10b1b6b1ab1ac10Aa 2022042712261288296_j_mathm-2020-0103_ref_004_w2aab3b7c10b1b6b1ab1ab4Aa 2022042712261288296_j_mathm-2020-0103_ref_028_w2aab3b7c10b1b6b1ab1ac28Aa 2022042712261288296_j_mathm-2020-0103_ref_046_w2aab3b7c10b1b6b1ab1ac46Aa 2022042712261288296_j_mathm-2020-0103_ref_033_w2aab3b7c10b1b6b1ab1ac33Aa 2022042712261288296_j_mathm-2020-0103_ref_015_w2aab3b7c10b1b6b1ab1ac15Aa 2022042712261288296_j_mathm-2020-0103_ref_051_w2aab3b7c10b1b6b1ab1ac51Aa 2022042712261288296_j_mathm-2020-0103_ref_020_w2aab3b7c10b1b6b1ab1ac20Aa 2022042712261288296_j_mathm-2020-0103_ref_003_w2aab3b7c10b1b6b1ab1ab3Aa 2022042712261288296_j_mathm-2020-0103_ref_029_w2aab3b7c10b1b6b1ab1ac29Aa 2022042712261288296_j_mathm-2020-0103_ref_047_w2aab3b7c10b1b6b1ab1ac47Aa 2022042712261288296_j_mathm-2020-0103_ref_016_w2aab3b7c10b1b6b1ab1ac16Aa 2022042712261288296_j_mathm-2020-0103_ref_034_w2aab3b7c10b1b6b1ab1ac34Aa 2022042712261288296_j_mathm-2020-0103_ref_021_w2aab3b7c10b1b6b1ab1ac21Aa 2022042712261288296_j_mathm-2020-0103_ref_006_w2aab3b7c10b1b6b1ab1ab6Aa 2022042712261288296_j_mathm-2020-0103_ref_048_w2aab3b7c10b1b6b1ab1ac48Aa 2022042712261288296_j_mathm-2020-0103_ref_035_w2aab3b7c10b1b6b1ab1ac35Aa 2022042712261288296_j_mathm-2020-0103_ref_017_w2aab3b7c10b1b6b1ab1ac17Aa 2022042712261288296_j_mathm-2020-0103_ref_009_w2aab3b7c10b1b6b1ab1ab9Aa 2022042712261288296_j_mathm-2020-0103_ref_022_w2aab3b7c10b1b6b1ab1ac22Aa 2022042712261288296_j_mathm-2020-0103_ref_040_w2aab3b7c10b1b6b1ab1ac40Aa 2022042712261288296_j_mathm-2020-0103_ref_005_w2aab3b7c10b1b6b1ab1ab5Aa 2022042712261288296_j_mathm-2020-0103_ref_027_w2aab3b7c10b1b6b1ab1ac27Aa 2022042712261288296_j_mathm-2020-0103_ref_045_w2aab3b7c10b1b6b1ab1ac45Aa 2022042712261288296_j_mathm-2020-0103_ref_014_w2aab3b7c10b1b6b1ab1ac14Aa 2022042712261288296_j_mathm-2020-0103_ref_050_w2aab3b7c10b1b6b1ab1ac50Aa 2022042712261288296_j_mathm-2020-0103_ref_032_w2aab3b7c10b1b6b1ab1ac32Aa 2022042712261288296_j_mathm-2020-0103_ref_019_w2aab3b7c10b1b6b1ab1ac19Aa 2022042712261288296_j_mathm-2020-0103_ref_037_w2aab3b7c10b1b6b1ab1ac37Aa 2022042712261288296_j_mathm-2020-0103_ref_024_w2aab3b7c10b1b6b1ab1ac24Aa 2022042712261288296_j_mathm-2020-0103_ref_007_w2aab3b7c10b1b6b1ab1ab7Aa 2022042712261288296_j_mathm-2020-0103_ref_042_w2aab3b7c10b1b6b1ab1ac42Aa 2022042712261288296_j_mathm-2020-0103_ref_011_w2aab3b7c10b1b6b1ab1ac11Aa 2022042712261288296_j_mathm-2020-0103_ref_038_w2aab3b7c10b1b6b1ab1ac38Aa 2022042712261288296_j_mathm-2020-0103_ref_025_w2aab3b7c10b1b6b1ab1ac25Aa 2022042712261288296_j_mathm-2020-0103_ref_043_w2aab3b7c10b1b6b1ab1ac43Aa 2022042712261288296_j_mathm-2020-0103_ref_012_w2aab3b7c10b1b6b1ab1ac12Aa 2022042712261288296_j_mathm-2020-0103_ref_008_w2aab3b7c10b1b6b1ab1ab8Aa 2022042712261288296_j_mathm-2020-0103_ref_030_w2aab3b7c10b1b6b1ab1ac30Aa 2022042712261288296_j_mathm-2020-0103_ref_002_w2aab3b7c10b1b6b1ab1ab2Aa 2022042712261288296_j_mathm-2020-0103_ref_039_w2aab3b7c10b1b6b1ab1ac39Aa 2022042712261288296_j_mathm-2020-0103_ref_026_w2aab3b7c10b1b6b1ab1ac26Aa 2022042712261288296_j_mathm-2020-0103_ref_044_w2aab3b7c10b1b6b1ab1ac44Aa 2022042712261288296_j_mathm-2020-0103_ref_031_w2aab3b7c10b1b6b1ab1ac31Aa 2022042712261288296_j_mathm-2020-0103_ref_013_w2aab3b7c10b1b6b1ab1ac13Aa |
| References_xml | – ident: 2022042712261288296_j_mathm-2020-0103_ref_012_w2aab3b7c10b1b6b1ab1ac12Aa doi: 10.1117/12.976517 – ident: 2022042712261288296_j_mathm-2020-0103_ref_039_w2aab3b7c10b1b6b1ab1ac39Aa doi: 10.1007/978-3-319-46475-6_10 – ident: 2022042712261288296_j_mathm-2020-0103_ref_004_w2aab3b7c10b1b6b1ab1ab4Aa doi: 10.1007/978-3-540-71992-2_87 – ident: 2022042712261288296_j_mathm-2020-0103_ref_003_w2aab3b7c10b1b6b1ab1ab3Aa – ident: 2022042712261288296_j_mathm-2020-0103_ref_020_w2aab3b7c10b1b6b1ab1ac20Aa – ident: 2022042712261288296_j_mathm-2020-0103_ref_016_w2aab3b7c10b1b6b1ab1ac16Aa doi: 10.1109/ICCV.2015.169 – ident: 2022042712261288296_j_mathm-2020-0103_ref_028_w2aab3b7c10b1b6b1ab1ac28Aa doi: 10.1109/ICCV.2013.82 – ident: 2022042712261288296_j_mathm-2020-0103_ref_029_w2aab3b7c10b1b6b1ab1ac29Aa doi: 10.1109/CVPRW.2018.00137 – ident: 2022042712261288296_j_mathm-2020-0103_ref_033_w2aab3b7c10b1b6b1ab1ac33Aa doi: 10.1016/S0165-1684(99)00161-9 – ident: 2022042712261288296_j_mathm-2020-0103_ref_001_w2aab3b7c10b1b6b1ab1ab1Aa doi: 10.1109/CVPRW.2018.00119 – ident: 2022042712261288296_j_mathm-2020-0103_ref_010_w2aab3b7c10b1b6b1ab1ac10Aa doi: 10.1145/2651362 – ident: 2022042712261288296_j_mathm-2020-0103_ref_025_w2aab3b7c10b1b6b1ab1ac25Aa doi: 10.1109/CVPR.2016.299 – ident: 2022042712261288296_j_mathm-2020-0103_ref_005_w2aab3b7c10b1b6b1ab1ab5Aa doi: 10.1007/978-3-319-46478-7_34 – ident: 2022042712261288296_j_mathm-2020-0103_ref_013_w2aab3b7c10b1b6b1ab1ac13Aa doi: 10.1016/j.patcog.2020.107246 – ident: 2022042712261288296_j_mathm-2020-0103_ref_018_w2aab3b7c10b1b6b1ab1ac18Aa doi: 10.1109/TPAMI.2010.168 – ident: 2022042712261288296_j_mathm-2020-0103_ref_048_w2aab3b7c10b1b6b1ab1ac48Aa doi: 10.1109/CVPRW.2018.00135 – ident: 2022042712261288296_j_mathm-2020-0103_ref_051_w2aab3b7c10b1b6b1ab1ac51Aa doi: 10.1109/TIP.2015.2446191 – ident: 2022042712261288296_j_mathm-2020-0103_ref_041_w2aab3b7c10b1b6b1ab1ac41Aa – ident: 2022042712261288296_j_mathm-2020-0103_ref_031_w2aab3b7c10b1b6b1ab1ac31Aa doi: 10.1007/978-3-030-14085-4_21 – ident: 2022042712261288296_j_mathm-2020-0103_ref_008_w2aab3b7c10b1b6b1ab1ab8Aa doi: 10.1109/TIP.2016.2598681 – ident: 2022042712261288296_j_mathm-2020-0103_ref_019_w2aab3b7c10b1b6b1ab1ac19Aa doi: 10.1109/TPAMI.2010.168 – ident: 2022042712261288296_j_mathm-2020-0103_ref_040_w2aab3b7c10b1b6b1ab1ac40Aa doi: 10.1007/978-3-319-24574-4_28 – ident: 2022042712261288296_j_mathm-2020-0103_ref_047_w2aab3b7c10b1b6b1ab1ac47Aa doi: 10.1109/CVPR.2018.00337 – ident: 2022042712261288296_j_mathm-2020-0103_ref_035_w2aab3b7c10b1b6b1ab1ac35Aa doi: 10.1109/ICCV.2015.303 – ident: 2022042712261288296_j_mathm-2020-0103_ref_022_w2aab3b7c10b1b6b1ab1ac22Aa – ident: 2022042712261288296_j_mathm-2020-0103_ref_038_w2aab3b7c10b1b6b1ab1ac38Aa doi: 10.1007/978-3-319-46475-6_10 – ident: 2022042712261288296_j_mathm-2020-0103_ref_023_w2aab3b7c10b1b6b1ab1ac23Aa – ident: 2022042712261288296_j_mathm-2020-0103_ref_024_w2aab3b7c10b1b6b1ab1ac24Aa – ident: 2022042712261288296_j_mathm-2020-0103_ref_045_w2aab3b7c10b1b6b1ab1ac45Aa doi: 10.1007/978-3-662-03039-4_13 – ident: 2022042712261288296_j_mathm-2020-0103_ref_027_w2aab3b7c10b1b6b1ab1ac27Aa – ident: 2022042712261288296_j_mathm-2020-0103_ref_026_w2aab3b7c10b1b6b1ab1ac26Aa doi: 10.1109/ICCV.2015.388 – ident: 2022042712261288296_j_mathm-2020-0103_ref_011_w2aab3b7c10b1b6b1ab1ac11Aa doi: 10.1145/2651362 – ident: 2022042712261288296_j_mathm-2020-0103_ref_046_w2aab3b7c10b1b6b1ab1ac46Aa doi: 10.1109/TIP.2003.819861 – ident: 2022042712261288296_j_mathm-2020-0103_ref_009_w2aab3b7c10b1b6b1ab1ab9Aa – ident: 2022042712261288296_j_mathm-2020-0103_ref_021_w2aab3b7c10b1b6b1ab1ac21Aa doi: 10.1109/ICIP.2004.1421765 – ident: 2022042712261288296_j_mathm-2020-0103_ref_044_w2aab3b7c10b1b6b1ab1ac44Aa doi: 10.1109/CVPR.2014.383 – ident: 2022042712261288296_j_mathm-2020-0103_ref_030_w2aab3b7c10b1b6b1ab1ac30Aa doi: 10.1109/ICDAR.2019.00020 – ident: 2022042712261288296_j_mathm-2020-0103_ref_049_w2aab3b7c10b1b6b1ab1ac49Aa doi: 10.1109/TIP.2017.2662206 – ident: 2022042712261288296_j_mathm-2020-0103_ref_002_w2aab3b7c10b1b6b1ab1ab2Aa doi: 10.1109/ICIP.2016.7532754 – ident: 2022042712261288296_j_mathm-2020-0103_ref_007_w2aab3b7c10b1b6b1ab1ab7Aa doi: 10.1201/9781420027822.ch14 – ident: 2022042712261288296_j_mathm-2020-0103_ref_043_w2aab3b7c10b1b6b1ab1ac43Aa doi: 10.1016/0734-189X(86)90004-6 – ident: 2022042712261288296_j_mathm-2020-0103_ref_034_w2aab3b7c10b1b6b1ab1ac34Aa – ident: 2022042712261288296_j_mathm-2020-0103_ref_050_w2aab3b7c10b1b6b1ab1ac50Aa doi: 10.1109/TIP.2018.2839891 – ident: 2022042712261288296_j_mathm-2020-0103_ref_036_w2aab3b7c10b1b6b1ab1ac36Aa – ident: 2022042712261288296_j_mathm-2020-0103_ref_037_w2aab3b7c10b1b6b1ab1ac37Aa – ident: 2022042712261288296_j_mathm-2020-0103_ref_014_w2aab3b7c10b1b6b1ab1ac14Aa doi: 10.1109/TIP.2017.2691802 – ident: 2022042712261288296_j_mathm-2020-0103_ref_006_w2aab3b7c10b1b6b1ab1ab6Aa doi: 10.1109/CVPR.2016.185 – ident: 2022042712261288296_j_mathm-2020-0103_ref_015_w2aab3b7c10b1b6b1ab1ac15Aa – ident: 2022042712261288296_j_mathm-2020-0103_ref_042_w2aab3b7c10b1b6b1ab1ac42Aa doi: 10.1109/34.67627 – ident: 2022042712261288296_j_mathm-2020-0103_ref_017_w2aab3b7c10b1b6b1ab1ac17Aa – ident: 2022042712261288296_j_mathm-2020-0103_ref_032_w2aab3b7c10b1b6b1ab1ac32Aa |
| SSID | ssib044603931 ssib020483505 ssib022702161 |
| Score | 2.0906153 |
| Snippet | Mathematical morphology is a powerful tool for image processing tasks. The main difficulty in designing mathematical morphological algorithm is deciding the... |
| SourceID | crossref walterdegruyter |
| SourceType | Index Database Publisher |
| StartPage | 87 |
| SubjectTerms | 68T07 68T45 68U10 De-Hazing De-Raining Dilation Erosion Neurons Learning structuring element Morphological Network Opening-Closing Network |
| Title | Image Restoration by Learning Morphological Opening-Closing Network |
| URI | https://www.degruyter.com/doi/10.1515/mathm-2020-0103 |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2353-3390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib020483505 issn: 2353-3390 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEG7W6MFLUFRMjDIHD4IMTr-7j2ETUXAXCRFyG7p7elw1mQm7m5i95F_4f-3HvDIhoIKXYWnoYrbqm6qu6noA8JoRSzSjKi2k802I5TbVUsDUIl8WyUpeCBWGTfD5XJycyM-Tya-2FubylFeVuLqS5_9V1G7NCduXzv6FuDuibsH9dkJ3Tyd29_wjwX8882k4R2FiTJSuO2F-aiMgs9oxtlN4Pp3ErabT0zrEDOYxKXx4Yp11fV19FW-7e_M2bcr6w-3D_uAavBNh7bz9EGA-UtX3HoQHMUjulYlvF139UF1-sC91KOIs6IXSal2vFsOoBMpGUYkDB_Hlxcb3efT_JBqboNUQpjjFOM4IbVUwuYW01dAWR8PcjMe9pfNpaI_hGLE4S5tXyXBv3tor_ZHV63IRvRfkSOSBQO4J5J4AgYLfA_cRp9Lr-9n1YaumfKtjTHs1iXxJH-zLg52D7QueYdNIytF-N3q5G2eg7Z8hL6KwXyPDBseb40dgu_FLkv2Ip8dgYqsnYBqwlAywlOhN0mIpuYGlZISlpMHSU_Dl_eHx9EPaTN1IDcTYH1ksERqWTJDCWFOWrEDSMGGct045tsiUMjMFohYyWXLKNVEKQlYi69SBVPgZ2Krqyj4HiWSoFFowIZkhymQKIm60RVRrIajOdsCblg_5eWyukt8hjh1ARnzKm29uddcWL8Hdf9v2AjzsQb0HttbLC_sSPDCX62-r5auAht_ZgYrA |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Restoration+by+Learning+Morphological+Opening-Closing+Network&rft.jtitle=Mathematical+Morphology+-+Theory+and+Applications&rft.au=Mondal%2C+Ranjan&rft.au=Dey%2C+Moni+Shankar&rft.au=Chanda%2C+Bhabatosh&rft.date=2020-01-01&rft.pub=De+Gruyter+Open&rft.eissn=2353-3390&rft.volume=4&rft.issue=1&rft.spage=87&rft.epage=107&rft_id=info:doi/10.1515%2Fmathm-2020-0103&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_mathm_2020_01034187 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2353-3390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2353-3390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2353-3390&client=summon |