Determination of Consistency and Inconsistency Radii for Systems of Linear Equations and Inequalities Using the Matrix l1 Norm
The problem of determining the minimal change in the coefficients of a consistent system of linear equations and inequalities that makes the system inconsistent is considered (the problem of determining the consistency radius of a system). If the original system is inconsistent, the inconsistency ra...
Uloženo v:
| Vydáno v: | Computational mathematics and mathematical physics Ročník 58; číslo 6; s. 840 - 849 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Moscow
Pleiades Publishing
01.06.2018
|
| Témata: | |
| ISSN: | 0965-5425, 1555-6662 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The problem of determining the minimal change in the coefficients of a consistent system of linear equations and inequalities that makes the system inconsistent is considered (the problem of determining the consistency radius of a system). If the original system is inconsistent, the inconsistency radius is defined as the solution to the problem of minimal correction of the coefficients upon which the system has a solution. For a homogeneous system of linear equations and inequalities, it is considered whether the property that a nonzero solution exists changes when correcting the parameters. A criterion for the correction magnitude is the sum of the moduli of all elements of the correction matrix. The problems of determining the consistency and inconsistency radii for systems of linear constraints written in different forms (with equality or inequality constraints and with the condition that some of the variables or all of them are nonnegative) reduce to a collection of finitely many linear programming problems. |
|---|---|
| AbstractList | The problem of determining the minimal change in the coefficients of a consistent system of linear equations and inequalities that makes the system inconsistent is considered (the problem of determining the consistency radius of a system). If the original system is inconsistent, the inconsistency radius is defined as the solution to the problem of minimal correction of the coefficients upon which the system has a solution. For a homogeneous system of linear equations and inequalities, it is considered whether the property that a nonzero solution exists changes when correcting the parameters. A criterion for the correction magnitude is the sum of the moduli of all elements of the correction matrix. The problems of determining the consistency and inconsistency radii for systems of linear constraints written in different forms (with equality or inequality constraints and with the condition that some of the variables or all of them are nonnegative) reduce to a collection of finitely many linear programming problems. |
| Author | Murav’eva, O. V. |
| Author_xml | – sequence: 1 givenname: O. V. surname: Murav’eva fullname: Murav’eva, O. V. email: muraveva@tidm.ru organization: Moscow Pedagogical State University |
| BookMark | eNp9kFFLwzAUhYNMcJv-AN_yB6pJ06Tpo8zpBlPBueeSpsnMaBNNMnAv_nbbbQ-isKfLPYfvXM4dgYF1VgFwjdENxiS7XaKCUZqlFHPEEEbsDAwxpTRhjKUDMOztpPcvwCiEDUKYFZwMwfe9isq3xoponIVOw4mzwYSorNxBYWs4t_KX8ipqY6B2Hi53ndSGHlkYq4SH08_tPiUcOdXtjYlGBbgKxq5hfFfwSURvvmCD4bPz7SU416IJ6uo4x2D1MH2bzJLFy-N8crdIJCaEJZzlqWBZTQudCZVXnKeYCpZXBJNCoKqmvOKowoWSJNNck1wirRSrGKeS84yMAT7kSu9C8EqXH960wu9KjMr-geW_B3ZM_oeRJu4LRi9Mc5JMD2Torti18uXGbb3tCp6AfgAcVIbC |
| CitedBy_id | crossref_primary_10_1016_j_omega_2020_102354 crossref_primary_10_1134_S0081543822060219 |
| Cites_doi | 10.1134/S0005117911030076 10.1134/S0965542515030112 10.1134/S0965542516020081 10.1134/S0965542512120044 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2018 |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2018 |
| DBID | AAYXX CITATION |
| DOI | 10.1134/S0965542518060106 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 1555-6662 |
| EndPage | 849 |
| ExternalDocumentID | 10_1134_S0965542518060106 |
| GroupedDBID | --K -5D -5G -BR -EM -Y2 -~C -~X .VR 06D 0R~ 0VY 1B1 1N0 29F 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 408 40D 40E 5GY 5VS 6J9 6NX 7WY 88I 8FE 8FG 8FH 8FL 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABEFU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ H~9 I-F IHE IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ K60 K6V K6~ K7- KOV L6V LK5 LLZTM M0C M0N M2P M41 M4Y M7R M7S MA- MK~ N2Q NB0 NPVJJ NQ- NQJWS NU0 O9- O93 O9J P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RIG RNS ROL RPZ RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC TUS UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 XPP XU3 YLTOR ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR CITATION PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c1336-8672a64d59f4ae7b88215a67b3139a0bd58b80b19ec34f8f37c0fee6b685c8843 |
| IEDL.DBID | RSV |
| ISSN | 0965-5425 |
| IngestDate | Sat Nov 29 05:16:06 EST 2025 Tue Nov 18 21:53:58 EST 2025 Fri Feb 21 02:29:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | matrix correction inconsistent systems of linear equations and inequalities consistency and inconsistency radii for systems of linear equations and inequalities improper linear programming problems |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1336-8672a64d59f4ae7b88215a67b3139a0bd58b80b19ec34f8f37c0fee6b685c8843 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1134_S0965542518060106 crossref_citationtrail_10_1134_S0965542518060106 springer_journals_10_1134_S0965542518060106 |
| PublicationCentury | 2000 |
| PublicationDate | 20180600 2018-6-00 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 6 year: 2018 text: 20180600 |
| PublicationDecade | 2010 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow |
| PublicationTitle | Computational mathematics and mathematical physics |
| PublicationTitleAbbrev | Comput. Math. and Math. Phys |
| PublicationYear | 2018 |
| Publisher | Pleiades Publishing |
| Publisher_xml | – name: Pleiades Publishing |
| References | Gorelik, Erokhin, Pechenkin (CR5) 2006 Barkalova (CR8) 2012; 52 Vasil’ev, Ivanitskii (CR9) 2003 Gorelik (CR3) 2001; 41 Gorelik, Trembacheva (CR10) 2016; 56 Murav’eva (CR6) 2010; 28 Murav’eva (CR4) 2015; 55 Murav’eva (CR7) 2011; 72 Vatolin (CR1) 1984; 24 Eremin, Mazurov, Astaf’ev (CR2) 1983 V. A. Gorelik (1002_CR3) 2001; 41 A. A. Vatolin (1002_CR1) 1984; 24 O. V. Murav’eva (1002_CR4) 2015; 55 O. V. Murav’eva (1002_CR6) 2010; 28 F. P. Vasil’ev (1002_CR9) 2003 V. A. Gorelik (1002_CR5) 2006 O. S. Barkalova (1002_CR8) 2012; 52 O. V. Murav’eva (1002_CR7) 2011; 72 V. A. Gorelik (1002_CR10) 2016; 56 I. I. Eremin (1002_CR2) 1983 |
| References_xml | – year: 2003 ident: CR9 publication-title: Linear Programming – volume: 72 start-page: 556 year: 2011 end-page: 569 ident: CR7 article-title: Robustness and correction of linear models publication-title: Autom. Remote Control doi: 10.1134/S0005117911030076 – year: 1983 ident: CR2 publication-title: Improper Linear and Convex Programming Problems – volume: 41 start-page: 1615 year: 2001 end-page: 1622 ident: CR3 article-title: Matrix correction of a linear programming problem with inconsistent constraints publication-title: Comput. Math. Math. Phys. – volume: 55 start-page: 366 year: 2015 end-page: 377 ident: CR4 article-title: Consistency and inconsistency radii for solving systems of linear equations and inequalities publication-title: Comput. Math. Math. Phys. doi: 10.1134/S0965542515030112 – year: 2006 ident: CR5 publication-title: Numerical Methods for the Correction of Improper Linear Programming Problems and Structured Systems of Equations – volume: 24 start-page: 1907 year: 1984 end-page: 1908 ident: CR1 article-title: Approximation of improper linear programming problems using a Euclidean norm criterion publication-title: Zh. Vychisl. Mat. Mat. Fiz. – volume: 56 start-page: 200 year: 2016 end-page: 205 ident: CR10 article-title: Solution of the linear regression problem using matrix correction methods in the publication-title: Comput. Math. Math. Phys. doi: 10.1134/S0965542516020081 – volume: 52 start-page: 1624 year: 2012 end-page: 1634 ident: CR8 article-title: Correction of improper linear programming problems in canonical form by applying the minimax criterion publication-title: Comput. Math. Math. Phys. doi: 10.1134/S0965542512120044 – volume: 28 start-page: 40 year: 2010 end-page: 57 ident: CR6 article-title: Disturbance and correction of systems of linear inequalities publication-title: Upr. Bol’shimi Sist. – volume-title: Numerical Methods for the Correction of Improper Linear Programming Problems and Structured Systems of Equations year: 2006 ident: 1002_CR5 – volume: 41 start-page: 1615 year: 2001 ident: 1002_CR3 publication-title: Comput. Math. Math. Phys. – volume: 28 start-page: 40 year: 2010 ident: 1002_CR6 publication-title: Upr. Bol’shimi Sist. – volume-title: Improper Linear and Convex Programming Problems year: 1983 ident: 1002_CR2 – volume: 72 start-page: 556 year: 2011 ident: 1002_CR7 publication-title: Autom. Remote Control doi: 10.1134/S0005117911030076 – volume-title: Linear Programming year: 2003 ident: 1002_CR9 – volume: 24 start-page: 1907 year: 1984 ident: 1002_CR1 publication-title: Zh. Vychisl. Mat. Mat. Fiz. – volume: 52 start-page: 1624 year: 2012 ident: 1002_CR8 publication-title: Comput. Math. Math. Phys. doi: 10.1134/S0965542512120044 – volume: 56 start-page: 200 year: 2016 ident: 1002_CR10 publication-title: Comput. Math. Math. Phys. doi: 10.1134/S0965542516020081 – volume: 55 start-page: 366 year: 2015 ident: 1002_CR4 publication-title: Comput. Math. Math. Phys. doi: 10.1134/S0965542515030112 |
| SSID | ssj0016983 |
| Score | 2.0743537 |
| Snippet | The problem of determining the minimal change in the coefficients of a consistent system of linear equations and inequalities that makes the system... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 840 |
| SubjectTerms | Computational Mathematics and Numerical Analysis Mathematics Mathematics and Statistics |
| Title | Determination of Consistency and Inconsistency Radii for Systems of Linear Equations and Inequalities Using the Matrix l1 Norm |
| URI | https://link.springer.com/article/10.1134/S0965542518060106 |
| Volume | 58 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1555-6662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016983 issn: 0965-5425 databaseCode: RSV dateStart: 20060101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCD1apYX-zBkxJMms1mcxRt8WCLtCq9hX1CoaTaVNGLv93ZZFMsPkBvIcxswj6_YWa_D6ETziwuTbgneItaCTN4Cn3jxYawSGhqpCpIXG_iXo8Nh8mtu8edV9XuVUqy2KlL3RFyPrA8JRFMsYD5RXJwGa3AacesXkN_8DBPHdCk5N4Ea8-au1Tmt00sHkaLmdDigOnU__Vrm2jD4Ul8UU6ALbSkswaqO2yJ3crNG2i9O-dnzbfR-1VVBWPHBU8MLoQ7cwug3zDPFIZ949ObPlejEQZ8ix3DuXWBMBaWCW4_lWzhufPT5T1NiMBxUY-A4bu4a5UAXvE4wD0AyTvovtO-u7z2nBKDJyGGpR6jcYtToqLEEK5jAbA8iDiNRQgAkvtCRUwwXwSJliExzISx9I3WVFAWScZIuItq2STTewhLEzOfKwatECI1Z0pFUghoqQUuiWgivxqSVDqacquWMU6LcCUk6ZfebqLTuctjydHxm_FZNYapW675z9b7f7I-QGuAp1hZSXaIarPpsz5Cq_JlNsqnx8U0_QBojuDT |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD06k4P_Pgk1Ls1jRNH8UPJm5D_GJvJUkTGIz50Sn64t_upU2Hww_Qt1LuriXJJb_jLr8D2BPc4tJYeFI0mW1hhk-Bb7zIUB5KzYxKcxLXdtTt8l4vvnT3uLOy2r1MSeY7ddF3hB5eW56SEJdYg_t5cnAaZigeWJYw_-r6bpw6YHHBvYnSnhV3qcxvTUweRpOZ0PyAOav-69eWYNHhSXJULIBlmNLDGlQdtiTOc7MaLHTG_KzZCryflFUwdl7IvSF5487MAug3IoYpwX3j05srkfb7BPEtcQznVgXDWHQTcvpYsIVnTk8X9zQxAid5PQLB75KO7QTwSgYN0kWQvAq3Z6c3xy3PdWLwFMawzOMsagpG0zA2VOhIIixvhIJFMkAAKXyZhlxyXzZirQJquAki5RutmWQ8VJzTYA0qw_uhXgeiTMR9kXK0QqnSgqdpqKRES01UiWUd_HJKEuVoym23jEGShysBTb6Mdh32xyoPBUfHb8IH5Rwmzl2zn6U3_iS9C3Otm047aZ93LzZhHrEVL6rKtqAyenrW2zCrXkb97GknX7If-rvjtw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FdGDb_FtDp6UYnebpulR1EVRF_GFt5InLCxVt6voxd_upE0XxQeIt1Jm0tJJmm-YyfcBbAvucGkqAilazEmY4VUU2iCxlMfSMKt0SeJ6lnQ6_O4uvfA6p0Xd7V6XJKszDY6lKR_sPWjrNUjo3pXjLIlxujV5WBYKR2GMuj56l65f3Q7LCCyteDjROnDmvqz57RCfN6bPVdFys2nP_Ps1Z2Ha40yyX02MORgx-TzMeMxJ_Iou5mHqfMjbWizA22HdHePiRe4tKQU9CwesX4nINcH_yYc7l0J3uwRxL_HM584F01tcPuTosWIRL7yfqc5vYmZOyj4Fgs8l504h4IX0mqSD4HkRbtpH1wfHgVdoCBTmtizgLGkJRnWcWipMIhGuN2PBEhkhsBSh1DGXPJTN1KiIWm6jRIXWGCYZjxXnNFqCRn6fm2UgyiY8FJrjKJQqI7jWsZISR2qhSypXIKzDkylPX-5UNHpZmcZENPvytVdgZ-jyUHF3_Ga8W8cz88u4-Nl69U_WWzBxcdjOzk46p2swiZCLV81m69AY9J_MBoyr50G36G-Ws_cd2Cnsmw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+Consistency+and+Inconsistency+Radii+for+Systems+of+Linear+Equations+and+Inequalities+Using+the+Matrix+l1+Norm&rft.jtitle=Computational+mathematics+and+mathematical+physics&rft.au=Murav%E2%80%99eva%2C+O.+V.&rft.date=2018-06-01&rft.pub=Pleiades+Publishing&rft.issn=0965-5425&rft.eissn=1555-6662&rft.volume=58&rft.issue=6&rft.spage=840&rft.epage=849&rft_id=info:doi/10.1134%2FS0965542518060106&rft.externalDocID=10_1134_S0965542518060106 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-5425&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-5425&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-5425&client=summon |