Determination of Consistency and Inconsistency Radii for Systems of Linear Equations and Inequalities Using the Matrix l1 Norm

The problem of determining the minimal change in the coefficients of a consistent system of linear equations and inequalities that makes the system inconsistent is considered (the problem of determining the consistency radius of a system). If the original system is inconsistent, the inconsistency ra...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational mathematics and mathematical physics Ročník 58; číslo 6; s. 840 - 849
Hlavní autor: Murav’eva, O. V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.06.2018
Témata:
ISSN:0965-5425, 1555-6662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The problem of determining the minimal change in the coefficients of a consistent system of linear equations and inequalities that makes the system inconsistent is considered (the problem of determining the consistency radius of a system). If the original system is inconsistent, the inconsistency radius is defined as the solution to the problem of minimal correction of the coefficients upon which the system has a solution. For a homogeneous system of linear equations and inequalities, it is considered whether the property that a nonzero solution exists changes when correcting the parameters. A criterion for the correction magnitude is the sum of the moduli of all elements of the correction matrix. The problems of determining the consistency and inconsistency radii for systems of linear constraints written in different forms (with equality or inequality constraints and with the condition that some of the variables or all of them are nonnegative) reduce to a collection of finitely many linear programming problems.
AbstractList The problem of determining the minimal change in the coefficients of a consistent system of linear equations and inequalities that makes the system inconsistent is considered (the problem of determining the consistency radius of a system). If the original system is inconsistent, the inconsistency radius is defined as the solution to the problem of minimal correction of the coefficients upon which the system has a solution. For a homogeneous system of linear equations and inequalities, it is considered whether the property that a nonzero solution exists changes when correcting the parameters. A criterion for the correction magnitude is the sum of the moduli of all elements of the correction matrix. The problems of determining the consistency and inconsistency radii for systems of linear constraints written in different forms (with equality or inequality constraints and with the condition that some of the variables or all of them are nonnegative) reduce to a collection of finitely many linear programming problems.
Author Murav’eva, O. V.
Author_xml – sequence: 1
  givenname: O. V.
  surname: Murav’eva
  fullname: Murav’eva, O. V.
  email: muraveva@tidm.ru
  organization: Moscow Pedagogical State University
BookMark eNp9kFFLwzAUhYNMcJv-AN_yB6pJ06Tpo8zpBlPBueeSpsnMaBNNMnAv_nbbbQ-isKfLPYfvXM4dgYF1VgFwjdENxiS7XaKCUZqlFHPEEEbsDAwxpTRhjKUDMOztpPcvwCiEDUKYFZwMwfe9isq3xoponIVOw4mzwYSorNxBYWs4t_KX8ipqY6B2Hi53ndSGHlkYq4SH08_tPiUcOdXtjYlGBbgKxq5hfFfwSURvvmCD4bPz7SU416IJ6uo4x2D1MH2bzJLFy-N8crdIJCaEJZzlqWBZTQudCZVXnKeYCpZXBJNCoKqmvOKowoWSJNNck1wirRSrGKeS84yMAT7kSu9C8EqXH960wu9KjMr-geW_B3ZM_oeRJu4LRi9Mc5JMD2Torti18uXGbb3tCp6AfgAcVIbC
CitedBy_id crossref_primary_10_1016_j_omega_2020_102354
crossref_primary_10_1134_S0081543822060219
Cites_doi 10.1134/S0005117911030076
10.1134/S0965542515030112
10.1134/S0965542516020081
10.1134/S0965542512120044
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2018
Copyright_xml – notice: Pleiades Publishing, Ltd. 2018
DBID AAYXX
CITATION
DOI 10.1134/S0965542518060106
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1555-6662
EndPage 849
ExternalDocumentID 10_1134_S0965542518060106
GroupedDBID --K
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.VR
06D
0R~
0VY
1B1
1N0
29F
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
408
40D
40E
5GY
5VS
6J9
6NX
7WY
88I
8FE
8FG
8FH
8FL
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABEFU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
H~9
I-F
IHE
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KOV
L6V
LK5
LLZTM
M0C
M0N
M2P
M41
M4Y
M7R
M7S
MA-
MK~
N2Q
NB0
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9J
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RIG
RNS
ROL
RPZ
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
TUS
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
XPP
XU3
YLTOR
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c1336-8672a64d59f4ae7b88215a67b3139a0bd58b80b19ec34f8f37c0fee6b685c8843
IEDL.DBID RSV
ISSN 0965-5425
IngestDate Sat Nov 29 05:16:06 EST 2025
Tue Nov 18 21:53:58 EST 2025
Fri Feb 21 02:29:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords matrix correction
inconsistent systems of linear equations and inequalities
consistency and inconsistency radii for systems of linear equations and inequalities
improper linear programming problems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1336-8672a64d59f4ae7b88215a67b3139a0bd58b80b19ec34f8f37c0fee6b685c8843
PageCount 10
ParticipantIDs crossref_primary_10_1134_S0965542518060106
crossref_citationtrail_10_1134_S0965542518060106
springer_journals_10_1134_S0965542518060106
PublicationCentury 2000
PublicationDate 20180600
2018-6-00
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 6
  year: 2018
  text: 20180600
PublicationDecade 2010
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
PublicationTitle Computational mathematics and mathematical physics
PublicationTitleAbbrev Comput. Math. and Math. Phys
PublicationYear 2018
Publisher Pleiades Publishing
Publisher_xml – name: Pleiades Publishing
References Gorelik, Erokhin, Pechenkin (CR5) 2006
Barkalova (CR8) 2012; 52
Vasil’ev, Ivanitskii (CR9) 2003
Gorelik (CR3) 2001; 41
Gorelik, Trembacheva (CR10) 2016; 56
Murav’eva (CR6) 2010; 28
Murav’eva (CR4) 2015; 55
Murav’eva (CR7) 2011; 72
Vatolin (CR1) 1984; 24
Eremin, Mazurov, Astaf’ev (CR2) 1983
V. A. Gorelik (1002_CR3) 2001; 41
A. A. Vatolin (1002_CR1) 1984; 24
O. V. Murav’eva (1002_CR4) 2015; 55
O. V. Murav’eva (1002_CR6) 2010; 28
F. P. Vasil’ev (1002_CR9) 2003
V. A. Gorelik (1002_CR5) 2006
O. S. Barkalova (1002_CR8) 2012; 52
O. V. Murav’eva (1002_CR7) 2011; 72
V. A. Gorelik (1002_CR10) 2016; 56
I. I. Eremin (1002_CR2) 1983
References_xml – year: 2003
  ident: CR9
  publication-title: Linear Programming
– volume: 72
  start-page: 556
  year: 2011
  end-page: 569
  ident: CR7
  article-title: Robustness and correction of linear models
  publication-title: Autom. Remote Control
  doi: 10.1134/S0005117911030076
– year: 1983
  ident: CR2
  publication-title: Improper Linear and Convex Programming Problems
– volume: 41
  start-page: 1615
  year: 2001
  end-page: 1622
  ident: CR3
  article-title: Matrix correction of a linear programming problem with inconsistent constraints
  publication-title: Comput. Math. Math. Phys.
– volume: 55
  start-page: 366
  year: 2015
  end-page: 377
  ident: CR4
  article-title: Consistency and inconsistency radii for solving systems of linear equations and inequalities
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542515030112
– year: 2006
  ident: CR5
  publication-title: Numerical Methods for the Correction of Improper Linear Programming Problems and Structured Systems of Equations
– volume: 24
  start-page: 1907
  year: 1984
  end-page: 1908
  ident: CR1
  article-title: Approximation of improper linear programming problems using a Euclidean norm criterion
  publication-title: Zh. Vychisl. Mat. Mat. Fiz.
– volume: 56
  start-page: 200
  year: 2016
  end-page: 205
  ident: CR10
  article-title: Solution of the linear regression problem using matrix correction methods in the
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542516020081
– volume: 52
  start-page: 1624
  year: 2012
  end-page: 1634
  ident: CR8
  article-title: Correction of improper linear programming problems in canonical form by applying the minimax criterion
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542512120044
– volume: 28
  start-page: 40
  year: 2010
  end-page: 57
  ident: CR6
  article-title: Disturbance and correction of systems of linear inequalities
  publication-title: Upr. Bol’shimi Sist.
– volume-title: Numerical Methods for the Correction of Improper Linear Programming Problems and Structured Systems of Equations
  year: 2006
  ident: 1002_CR5
– volume: 41
  start-page: 1615
  year: 2001
  ident: 1002_CR3
  publication-title: Comput. Math. Math. Phys.
– volume: 28
  start-page: 40
  year: 2010
  ident: 1002_CR6
  publication-title: Upr. Bol’shimi Sist.
– volume-title: Improper Linear and Convex Programming Problems
  year: 1983
  ident: 1002_CR2
– volume: 72
  start-page: 556
  year: 2011
  ident: 1002_CR7
  publication-title: Autom. Remote Control
  doi: 10.1134/S0005117911030076
– volume-title: Linear Programming
  year: 2003
  ident: 1002_CR9
– volume: 24
  start-page: 1907
  year: 1984
  ident: 1002_CR1
  publication-title: Zh. Vychisl. Mat. Mat. Fiz.
– volume: 52
  start-page: 1624
  year: 2012
  ident: 1002_CR8
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542512120044
– volume: 56
  start-page: 200
  year: 2016
  ident: 1002_CR10
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542516020081
– volume: 55
  start-page: 366
  year: 2015
  ident: 1002_CR4
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542515030112
SSID ssj0016983
Score 2.0743537
Snippet The problem of determining the minimal change in the coefficients of a consistent system of linear equations and inequalities that makes the system...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 840
SubjectTerms Computational Mathematics and Numerical Analysis
Mathematics
Mathematics and Statistics
Title Determination of Consistency and Inconsistency Radii for Systems of Linear Equations and Inequalities Using the Matrix l1 Norm
URI https://link.springer.com/article/10.1134/S0965542518060106
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1555-6662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016983
  issn: 0965-5425
  databaseCode: RSV
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCD1apYX-zBkxJMms1mcxRt8WCLtCq9hX1CoaTaVNGLv93ZZFMsPkBvIcxswj6_YWa_D6ETziwuTbgneItaCTN4Cn3jxYawSGhqpCpIXG_iXo8Nh8mtu8edV9XuVUqy2KlL3RFyPrA8JRFMsYD5RXJwGa3AacesXkN_8DBPHdCk5N4Ea8-au1Tmt00sHkaLmdDigOnU__Vrm2jD4Ul8UU6ALbSkswaqO2yJ3crNG2i9O-dnzbfR-1VVBWPHBU8MLoQ7cwug3zDPFIZ949ObPlejEQZ8ix3DuXWBMBaWCW4_lWzhufPT5T1NiMBxUY-A4bu4a5UAXvE4wD0AyTvovtO-u7z2nBKDJyGGpR6jcYtToqLEEK5jAbA8iDiNRQgAkvtCRUwwXwSJliExzISx9I3WVFAWScZIuItq2STTewhLEzOfKwatECI1Z0pFUghoqQUuiWgivxqSVDqacquWMU6LcCUk6ZfebqLTuctjydHxm_FZNYapW675z9b7f7I-QGuAp1hZSXaIarPpsz5Cq_JlNsqnx8U0_QBojuDT
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD06k4P_Pgk1Ls1jRNH8UPJm5D_GJvJUkTGIz50Sn64t_upU2Hww_Qt1LuriXJJb_jLr8D2BPc4tJYeFI0mW1hhk-Bb7zIUB5KzYxKcxLXdtTt8l4vvnT3uLOy2r1MSeY7ddF3hB5eW56SEJdYg_t5cnAaZigeWJYw_-r6bpw6YHHBvYnSnhV3qcxvTUweRpOZ0PyAOav-69eWYNHhSXJULIBlmNLDGlQdtiTOc7MaLHTG_KzZCryflFUwdl7IvSF5487MAug3IoYpwX3j05srkfb7BPEtcQznVgXDWHQTcvpYsIVnTk8X9zQxAid5PQLB75KO7QTwSgYN0kWQvAq3Z6c3xy3PdWLwFMawzOMsagpG0zA2VOhIIixvhIJFMkAAKXyZhlxyXzZirQJquAki5RutmWQ8VJzTYA0qw_uhXgeiTMR9kXK0QqnSgqdpqKRES01UiWUd_HJKEuVoym23jEGShysBTb6Mdh32xyoPBUfHb8IH5Rwmzl2zn6U3_iS9C3Otm047aZ93LzZhHrEVL6rKtqAyenrW2zCrXkb97GknX7If-rvjtw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FdGDb_FtDp6UYnebpulR1EVRF_GFt5InLCxVt6voxd_upE0XxQeIt1Jm0tJJmm-YyfcBbAvucGkqAilazEmY4VUU2iCxlMfSMKt0SeJ6lnQ6_O4uvfA6p0Xd7V6XJKszDY6lKR_sPWjrNUjo3pXjLIlxujV5WBYKR2GMuj56l65f3Q7LCCyteDjROnDmvqz57RCfN6bPVdFys2nP_Ps1Z2Ha40yyX02MORgx-TzMeMxJ_Iou5mHqfMjbWizA22HdHePiRe4tKQU9CwesX4nINcH_yYc7l0J3uwRxL_HM584F01tcPuTosWIRL7yfqc5vYmZOyj4Fgs8l504h4IX0mqSD4HkRbtpH1wfHgVdoCBTmtizgLGkJRnWcWipMIhGuN2PBEhkhsBSh1DGXPJTN1KiIWm6jRIXWGCYZjxXnNFqCRn6fm2UgyiY8FJrjKJQqI7jWsZISR2qhSypXIKzDkylPX-5UNHpZmcZENPvytVdgZ-jyUHF3_Ga8W8cz88u4-Nl69U_WWzBxcdjOzk46p2swiZCLV81m69AY9J_MBoyr50G36G-Ws_cd2Cnsmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+Consistency+and+Inconsistency+Radii+for+Systems+of+Linear+Equations+and+Inequalities+Using+the+Matrix+l1+Norm&rft.jtitle=Computational+mathematics+and+mathematical+physics&rft.au=Murav%E2%80%99eva%2C+O.+V.&rft.date=2018-06-01&rft.pub=Pleiades+Publishing&rft.issn=0965-5425&rft.eissn=1555-6662&rft.volume=58&rft.issue=6&rft.spage=840&rft.epage=849&rft_id=info:doi/10.1134%2FS0965542518060106&rft.externalDocID=10_1134_S0965542518060106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-5425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-5425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-5425&client=summon