RETRACTED ARTICLE: Human–computer interaction using vision-based hand gesture recognition systems: a survey
Considerable effort has been put toward the development of intelligent and natural interfaces between users and computer systems. In line with this endeavor, several modes of information (e.g., visual, audio, and pen) that are used either individually or in combination have been proposed. The use of...
Uloženo v:
| Vydáno v: | Neural computing & applications Ročník 25; číslo 2; s. 251 - 261 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.08.2014
|
| Témata: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Considerable effort has been put toward the development of intelligent and natural interfaces between users and computer systems. In line with this endeavor, several modes of information (e.g., visual, audio, and pen) that are used either individually or in combination have been proposed. The use of gestures to convey information is an important part of human communication. Hand gesture recognition is widely used in many applications, such as in computer games, machinery control (e.g., crane), and thorough mouse replacement. Computer recognition of hand gestures may provide a natural computer interface that allows people to point at or to rotate a computer-aided design model by rotating their hands. Hand gestures can be classified into two categories: static and dynamic. The use of hand gestures as a natural interface serves as a motivating force for research on gesture taxonomy, its representations, and recognition techniques. This paper summarizes the surveys carried out in human--computer interaction (HCI) studies and focuses on different application domains that use hand gestures for efficient interaction. This exploratory survey aims to provide a progress report on static and dynamic hand gesture recognition (i.e., gesture taxonomies, representations, and recognition techniques) in HCI and to identify future directions on this topic. |
|---|---|
| AbstractList | Considerable effort has been put toward the development of intelligent and natural interfaces between users and computer systems. In line with this endeavor, several modes of information (e.g., visual, audio, and pen) that are used either individually or in combination have been proposed. The use of gestures to convey information is an important part of human communication. Hand gesture recognition is widely used in many applications, such as in computer games, machinery control (e.g., crane), and thorough mouse replacement. Computer recognition of hand gestures may provide a natural computer interface that allows people to point at or to rotate a computer-aided design model by rotating their hands. Hand gestures can be classified into two categories: static and dynamic. The use of hand gestures as a natural interface serves as a motivating force for research on gesture taxonomy, its representations, and recognition techniques. This paper summarizes the surveys carried out in human--computer interaction (HCI) studies and focuses on different application domains that use hand gestures for efficient interaction. This exploratory survey aims to provide a progress report on static and dynamic hand gesture recognition (i.e., gesture taxonomies, representations, and recognition techniques) in HCI and to identify future directions on this topic. |
| Author | Hasan, Haitham Abdul-Kareem, Sameem |
| Author_xml | – sequence: 1 givenname: Haitham surname: Hasan fullname: Hasan, Haitham email: haitham@siswa.um.edu.my organization: Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, University of Malaya – sequence: 2 givenname: Sameem surname: Abdul-Kareem fullname: Abdul-Kareem, Sameem organization: Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, University of Malaya |
| BookMark | eNp9kE1OwzAQhS1UJErhAOx8gcA4jvPTXRUCrVQJqQpry3Gc4KpxKjup1B134IacBJeyYtGNxzPzvtHMu0UT0xuF0AOBRwKQPDkAFpIACA1IlPrPFZqSiNKAAksnaApZ5ItxRG_QrXNbAIjilE1RtynKzSIvi2e82JSrfF3M8XLshPn-_JJ9tx8HZbE2_hVy0L3Bo9OmxQftfBJUwqkafwhT41a5YbQKWyX71uhfrTu6QXVujgV2oz2o4x26bsTOqfu_OEPvL0WZL4P12-sqX6wDSSiFQFGWVgREFlc0bOpYJVXNwixMVcQyKqsmrKNE-h7N6rBmGcQiSwQoGTMmlZfMUHKeK23vnFUNl3oQp50GK_SOE-An1_jZNe5d4yfXOHiS_CP3VnfCHi8y4ZlxXmtaZfm2H63xB16AfgA3ooJ2 |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2016_05_038 crossref_primary_10_1007_s00521_023_08884_4 crossref_primary_10_1007_s11042_018_5971_z crossref_primary_10_1109_JSEN_2018_2859815 crossref_primary_10_1155_2016_7845102 crossref_primary_10_1016_j_measurement_2018_11_016 crossref_primary_10_1049_iet_ipr_2019_0924 crossref_primary_10_1007_s00521_019_04116_w crossref_primary_10_1016_j_neucom_2018_08_042 crossref_primary_10_1155_2018_1069823 crossref_primary_10_1007_s00521_024_09509_0 crossref_primary_10_3390_s18072194 crossref_primary_10_1007_s10586_017_1435_x crossref_primary_10_1007_s40747_021_00333_w crossref_primary_10_1145_3212720 crossref_primary_10_1177_1729881419861764 crossref_primary_10_1155_2018_8730281 crossref_primary_10_1155_2022_8091701 crossref_primary_10_1016_j_neucom_2018_01_092 crossref_primary_10_1007_s41060_016_0008_z crossref_primary_10_1016_j_compeleceng_2017_01_024 crossref_primary_10_1049_iet_cvi_2017_0052 crossref_primary_10_1007_s00034_017_0686_3 crossref_primary_10_2174_1573405620666230530093026 crossref_primary_10_1007_s11042_014_2370_y crossref_primary_10_1007_s11042_016_4265_6 crossref_primary_10_3390_su8090892 crossref_primary_10_1049_joe_2018_9377 crossref_primary_10_1049_joe_2018_8327 crossref_primary_10_3390_sym11070929 crossref_primary_10_1007_s00371_021_02259_3 crossref_primary_10_1007_s00521_014_1574_4 crossref_primary_10_1002_aisy_202100046 crossref_primary_10_1007_s00521_016_2525_z crossref_primary_10_1155_2016_9849720 crossref_primary_10_3390_s16010036 |
| Cites_doi | 10.1007/s00521-012-1113-0 10.1109/WISP.2011.6051717 10.1007/s10462-011-9303-1 10.1109/34.824819 10.1109/AFGR.2002.1004190 10.1109/TMM.2011.2120600 10.1109/IEMBS.2003.1280846 10.1007/s00138-008-0168-5 10.1145/1450579.1450644 10.1109/TSMCC.2007.893280 10.1016/j.eswa.2010.11.016 10.5121/ijcses.2011.2109 10.1016/j.patcog.2010.08.012 10.1109/TENCON.2004.1414484 10.1109/ISVRI.2011.5759657 10.1145/1897816.1897838 10.1016/j.gaitpost.2006.09.012 10.1109/ICCCN.2011.6006085 10.1145/1347390.1347395 10.1109/ICIG.2011.125 10.1109/72.809100 10.1109/JCSSE.2011.5930116 10.1109/TII.2011.2172450 10.1109/SACI.2011.5872992 10.1006/cviu.2000.0897 10.5121/iju.2012.3103 10.1109/WACV.2011.5711485 10.1155/2012/346951 10.1016/j.imavis.2011.11.004 10.1109/3DTV.2011.5877223 10.1109/VR.2011.5759431 10.1109/TPAMI.2011.33 10.1109/ICSPS.2010.5555462 10.1109/ICNC.2011.6022274 10.1016/j.patrec.2010.12.009 10.1109/TIM.2011.2108075 10.1155/ASP.2005.2101 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London 2013 |
| Copyright_xml | – notice: Springer-Verlag London 2013 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00521-013-1481-0 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 261 |
| ExternalDocumentID | 10_1007_s00521_013_1481_0 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c1330-e358b10a96b32fd6e7bd52928e4593cbf2d47cb3239d2d5906a97a0ec655ce593 |
| IEDL.DBID | RSV |
| ISSN | 0941-0643 |
| IngestDate | Sat Nov 29 02:58:58 EST 2025 Tue Nov 18 22:41:13 EST 2025 Fri Feb 21 02:34:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Natural interfaces Representations Recognition Gesture recognition Human–computer interaction |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1330-e358b10a96b32fd6e7bd52928e4593cbf2d47cb3239d2d5906a97a0ec655ce593 |
| Notes | retraction |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1007_s00521_013_1481_0 crossref_primary_10_1007_s00521_013_1481_0 springer_journals_10_1007_s00521_013_1481_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20140800 2014-8-00 |
| PublicationDateYYYYMMDD | 2014-08-01 |
| PublicationDate_xml | – month: 8 year: 2014 text: 20140800 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2014 |
| Publisher | Springer London |
| Publisher_xml | – name: Springer London |
| References | Sangineto EECupelliMReal-time viewpoint-invariant hand localization with cluttered backgroundsImage Vis Comput201230263710.1016/j.imavis.2011.11.004 Senin P (2008) Dynamic time warping algorithm review. Technical report. http://csdl.ics.hawaii.edu/techreports/08-04/08-04.pdf Karam M (2006) A framework for research and design of gesture-based human–computer interactions. PhD Thesis, University of Southampton Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Kluwer Academic, Boston, pp 1–43 Hand GKET (2011) http://sites.google.com/site/kinectapps/kinect Hackenberg G, McCall R, Broll W (2011) Lightweight palm and finger tracking for real-time 3D gesture control. In: IEEE virtual reality conference (VR), pp 19–26 IISU SDK (2012) http://www.softkinetic.com/Solutions/iisuSDK.aspx Mgestyk (2009) http://www.mgestyk.com Noury N, Barralon P, Virone G, Boissy P, Hamel M, Rumeau P (2003) A smart sensor based on rules and its evaluation in daily routines. In: Engineering in medicine and biology society, 2003. Proceedings of the 25th annual international conference of the IEEE, vol. 4, pp 3286–3289 HuangDYHuWCChangSHGabor filter-based hand-pose angle estimation for hand gesture recognition under varying illuminationExpert Syst Appl20113856031604210.1016/j.eswa.2010.11.016 Huang D, Tang W, Ding Y, Wan T, Wu X, Chen Y (2011) Motion capture of hand movements using stereo vision for minimally invasive vascular interventions. In: Sixth international conference on image and graphics, pp 737–742 Wang GW, Zhang C, Zhuang J (2012) An application of classifier combination methods in hand gesture recognition, mathematical problems in engineering, vol 2012. Hindawi Publishing Corporation, pp 1–17. doi:10.1155/2012/346951 Hsieh CC, Liou DH , Lee D (2010) A real time hand gesture recognition system using motion history image. In: 2nd international conference on signal processing systems (ICSPS), pp 394–398 Lindsay J (2009) K-means classifier tutorial. http://www.uoguelph.ca/~hydrogeo/Whitebox/Help/kMeansClass.html Thirumuruganathan S (2010) A detailed introduction to K-nearest neighbor (KNN) algorithm. http://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-neighbor-knnalgorithm Vsrkonyi-KczyARTusorBHuman–computer interaction for smart environment applications using fuzzy hand posture and gesture modelsIEEE Trans Instrum Meas20116051505151410.1109/TIM.2011.2108075 Birdal A, Hassanpour R (2008) Region based hand gesture recognition. In: 16th international conference in central Europe on computer graphics, visualization and computer vision, pp 17 McNeill D (1992) Hand and mind: what gestures reveal about thought. University of Chicago Press. ISBN 9780226561325 Rautaray SS, Agrawal A (2011) A novel human–computer interface based on hand gesture recognition using computer vision techniques. In: International conference on intelligent interactive technologies and multimedia (IITM-2011), pp 292–296 ChaudharyARahejaJLDasKRahejaSIntelligent approaches to interact with machines using hand gesture recognition in natural way: a surveyInt J Comput Sci Eng Survey (IJCSES)20112112213310.5121/ijcses.2011.2109 MoeslundTGranumEA survey of computer vision based human motion captureComput Vis Image Underst20018123126810.1006/cviu.2000.08971011.68548 JainAKDuinRPWMaoJStatistical pattern recognition: a reviewPattern Anal Mach Intell, IEEE Trans200022143710.1109/34.824819 Ionescu D, Ionescu B, Gadea C, Islam S (2011) An intelligent gesture interface for controlling TV sets and set-top boxes. In: 6th IEEE international symposium on applied computational intelligence and informatics, pp 159–164 Henia OB, Bouakaz S (2011) 3D Hand model animation with a new data-driven method. In: Workshop on digital media and digital content management, IEEE, pp 72–76 Hasan H, Abdul Kareem S (2012) Fingerprint image enhancement and recognition algorithms: a survey. Neural Comput Appl. doi:10.1007/s00521-012-1113-0 Derpanis KG (2005) Mean shift clustering, lecture notes. http://www.cse.yorku.ca/kosta/CompVisNotes/meanshift.pdf Sajjawiso T, Kanongchaiyos P (2011) 3D hand pose modeling from uncalibrate monocular images. In: Eighth international joint conference on computer science and software engineering (JCSSE), pp 177–181 Ramage D (2007) Hidden Markov models fundamentals. Lecture notes. http://cs229.stanford.edu/section/cs229-hmm.pdf WachsJPKolschMSternHEdanYVision-based hand-gesture applicationsCommun ACM201154607110.1145/1897816.1897838 Ionescu B, Coquin D, Lambert P, Buzuloiu V (2005) Dynamic hand gesture recognition using the skeleton of the hand. EURASIP J Appl Signal Process 2101–2109 Schlomer T, Poppinga B, Henze N, Boll S (2008) Gesture recognition with a wii controller. In: TEI 08 Proceedings of the 2nd international conference on tangible and embedded interaction. ACM, New York, NY, USA, pp 11–14 Luo Q, Kong X, Zeng G, Fan J (2008) Human action detection via boosted local motion histograms. Mach Vis Appl. doi:10.1007/s00138-008-0168-5 Yang J, Xu J, Li M, Zhang D, Wang C (2011) A real-time command system based on hand gesture recognition. In: Seventh international conference on natural computation, pp 1588–1592 RautaraySSAgrawalAReal time hand gesture recognition system for dynamic applicationsInt J UbiComp201231213110.5121/iju.2012.3103 RealeMJCanavanSYinLHuKHungTA multi-gesture interaction system using a 3-D Iris disk model for gaze estimation and an active appearance model for 3-D hand pointingIEEE Trans Multimed201113347448610.1109/TMM.2011.2120600 He GF, Kang SK, Song WC, Jung ST (2011) Real-time gesture recognition using 3D depth camera. In: 2nd international conference on software engineering and service science (ICSESS), pp 187–190 Just A (2006) Two-handed gestures for human–computer interaction. Research report IDIAP 06-73, EPFL Webel S, Keil J, Zoellner M (2008) Multi-touch gestural interaction in X3D using hidden markov models. In: VRST 08 Proceedings of the 2008 ACM symposium on virtual reality software and technology. ACM, New York, NY, USA, pp 263–264 Derpanis KG (2004) A review of vision- based hand gestures. http://cvr.yorku.ca/members/gradstudents/kosta/publications/fileGesturereview.pdf MitraSAcharyaTGesture recognition: a surveyIEEE Trans Syst Man Cybern, Part C Appl Rev200737331132410.1109/TSMCC.2007.893280 Radkowski R, Stritzke C (2012) Interactive hand gesture-based assembly for augmented reality applications. In: ACHI: The fifth international conference on advances in computer–human interactions, IARIA, pp 303–308 Ionescu D, Ionescu B, Gadea C, Islam S (2011) A multimodal interaction method that combines gestures and physical game controllers. In: Proceedings of 20th international conference on computer communications and networks (ICCCN), IEEE, pp 1–6 Haykin SS (2009) Neural networks and learning machines. Prentice Hall, New York Tan T, De Geo ZM (2011) Research of hand positioning and gesture recognition based on binocular vision. In: EEE international symposium on virtual reality innovation 2011, pp 311–315 Corera S, Krishnarajah N (2011) Capturing hand gesture movement: a survey on tools, techniques and logical considerations. In: Proceedings of chi sparks 2011 HCI research, innovation and implementation, Arnhem, Netherlands. http://proceedings.chi-sparks.nl/documents/Education-Gestures/FP-35-AC-EG.pdf Kanniche MB (2009) Gesture recognition from video sequences. PhD Thesis, University of Nice 2009 Bellarbi A, Benbelkacem S, Zenati-Henda N, Belhocine M (2011) Hand gesture interaction using color-based method for tabletop interfaces. In: IEEE 7th international symposium on intelligent signal processing (WISP), pp 16 Ju SX, Black MJ, Minneman S, Kimber D (1997) Analysis of gesture and action in technical talks for video indexing. Technical report. American Association for Artificial Intelligence. AAAI Technical Report SS-97-03 Bretzner L, Laptev I, Lindeberg T (2002) Hand gesture recognition using multi-scale colour features, hierarchical models and particle filtering. In: Fifth IEEE international conference on automatic face and gesture recognition, pp 405–410. doi:10.1109/AFGR.2002.1004190 Bao J, Song A, Guo Y, Tang H (2011) Dynamic hand gesture recognition based on SURF tracking in international conference on electric information and control engineering (ICEICE), pp 338–341 Hand Vu (2003) http://www.movesinstitute.org/~kolsch/HandVu/HandVu.html Kevin NYY, Ranganath S, Ghosh D (2004) Trajectory modeling in gesture recognition using CyberGloves, TENCON 2004, IEEE region 10 conference Hall ET (1973) The silent language, Anchor Books. ISBN-13 978-0385055499 Wii Nintendo (2006) http://www.nintendo.com/wii SymeonidisKHand gesture recognition using neural networksNeural Netw19961315 BourkeABrienJOLyonsGEvaluation of a threshold-based tri-axial accelerometer fall detection algorithmGait Posture200726219419910.1016/j.gaitpost.2006.09.012 GorceMDLFleetDJParagiosNModel-based 3D hand pose estimation from monocular videoIEEE Trans Pattern Anal Mach Intell20113391793180510.1109/TPAMI.2011.33 Bergh M, Gool L (2011) Combining RGB and ToF cameras for real-time 3D hand gesture interaction. In: Workshop on applications of computer vision (WACV), IEEE, pp 66–72 HoMFTsengCYLienCCHuangCLA multi-view vision- based hand motion capturing systemPattern Recogn20114444345310.1016/j.patcog.2010.08.0121211.68354 Boulay B (2007) Human posture recognition for behavior understanding. PhD thesis, Universite de Nice-Sophia Antipolis Hasan H, Abdul Kareem S (2012) Static hand gesture recognition using neural networks. Artif Intell Rev. doi:10.1007/s10462-011-9303-1 Holzmann GJ (1991) Design and validation of computer protocols. Prentice Hall, New Jersey Du H, Xiong W, Wang Z (2011) Modeling and interaction of virtual hand based on virtools. In: International conference on multimedia technology (ICMT), pp 416–419 WohlerCAnlaufJKAn adaptable time-delay neural-network algorithm for image sequence analysisIEEE Trans Neural Netw19991061531153610.1109/72.809100 Visser M, Hopf A Chaudhary (1481_CR9) 2011; 2 1481_CR5 1481_CR4 1481_CR3 1481_CR2 MF Ho (1481_CR60) 2011; 44 1481_CR7 1481_CR45 1481_CR49 1481_CR48 1481_CR47 1481_CR46 J Cheng (1481_CR36) 2012; 33 1481_CR30 AK Jain (1481_CR35) 2000; 22 1481_CR39 1481_CR34 DY Huang (1481_CR61) 2011; 38 1481_CR33 1481_CR31 1481_CR38 S Mitra (1481_CR8) 2007; 37 E Sangineto E (1481_CR37) 2012; 30 C Wohler (1481_CR32) 1999; 10 1481_CR63 1481_CR62 SS Rautaray (1481_CR41) 2012; 3 JP Wachs (1481_CR10) 2011; 54 1481_CR29 1481_CR28 K Symeonidis (1481_CR13) 1996; 13 1481_CR23 1481_CR67 1481_CR22 1481_CR66 1481_CR21 1481_CR65 1481_CR20 1481_CR64 1481_CR27 1481_CR26 AR Vsrkonyi-Kczy (1481_CR43) 2011; 60 1481_CR25 1481_CR24 1481_CR52 1481_CR51 T Moeslund (1481_CR6) 2001; 81 1481_CR50 C Tran (1481_CR40) 2012; 8 MDL Gorce (1481_CR44) 2011; 33 A Bourke (1481_CR17) 2007; 26 1481_CR19 1481_CR18 1481_CR1 MJ Reale (1481_CR42) 2011; 13 1481_CR12 1481_CR56 1481_CR11 1481_CR55 1481_CR54 1481_CR53 1481_CR16 1481_CR15 1481_CR59 1481_CR14 1481_CR58 1481_CR57 |
| References_xml | – reference: McNeill D (1992) Hand and mind: what gestures reveal about thought. University of Chicago Press. ISBN 9780226561325 – reference: Senin P (2008) Dynamic time warping algorithm review. Technical report. http://csdl.ics.hawaii.edu/techreports/08-04/08-04.pdf – reference: RealeMJCanavanSYinLHuKHungTA multi-gesture interaction system using a 3-D Iris disk model for gaze estimation and an active appearance model for 3-D hand pointingIEEE Trans Multimed201113347448610.1109/TMM.2011.2120600 – reference: Sajjawiso T, Kanongchaiyos P (2011) 3D hand pose modeling from uncalibrate monocular images. In: Eighth international joint conference on computer science and software engineering (JCSSE), pp 177–181 – reference: Tan T, De Geo ZM (2011) Research of hand positioning and gesture recognition based on binocular vision. In: EEE international symposium on virtual reality innovation 2011, pp 311–315 – reference: WachsJPKolschMSternHEdanYVision-based hand-gesture applicationsCommun ACM201154607110.1145/1897816.1897838 – reference: Yang J, Xu J, Li M, Zhang D, Wang C (2011) A real-time command system based on hand gesture recognition. In: Seventh international conference on natural computation, pp 1588–1592 – reference: Bergh M, Gool L (2011) Combining RGB and ToF cameras for real-time 3D hand gesture interaction. In: Workshop on applications of computer vision (WACV), IEEE, pp 66–72 – reference: Du H, Xiong W, Wang Z (2011) Modeling and interaction of virtual hand based on virtools. In: International conference on multimedia technology (ICMT), pp 416–419 – reference: MoeslundTGranumEA survey of computer vision based human motion captureComput Vis Image Underst20018123126810.1006/cviu.2000.08971011.68548 – reference: Hand Vu (2003) http://www.movesinstitute.org/~kolsch/HandVu/HandVu.html – reference: Just A (2006) Two-handed gestures for human–computer interaction. Research report IDIAP 06-73, EPFL – reference: Radkowski R, Stritzke C (2012) Interactive hand gesture-based assembly for augmented reality applications. In: ACHI: The fifth international conference on advances in computer–human interactions, IARIA, pp 303–308 – reference: Bretzner L, Laptev I, Lindeberg T (2002) Hand gesture recognition using multi-scale colour features, hierarchical models and particle filtering. In: Fifth IEEE international conference on automatic face and gesture recognition, pp 405–410. doi:10.1109/AFGR.2002.1004190 – reference: Haykin SS (2009) Neural networks and learning machines. Prentice Hall, New York – reference: Ionescu B, Coquin D, Lambert P, Buzuloiu V (2005) Dynamic hand gesture recognition using the skeleton of the hand. EURASIP J Appl Signal Process 2101–2109 – reference: Noury N, Barralon P, Virone G, Boissy P, Hamel M, Rumeau P (2003) A smart sensor based on rules and its evaluation in daily routines. In: Engineering in medicine and biology society, 2003. Proceedings of the 25th annual international conference of the IEEE, vol. 4, pp 3286–3289 – reference: Karam M (2006) A framework for research and design of gesture-based human–computer interactions. PhD Thesis, University of Southampton – reference: Wii Nintendo (2006) http://www.nintendo.com/wii – reference: Kevin NYY, Ranganath S, Ghosh D (2004) Trajectory modeling in gesture recognition using CyberGloves, TENCON 2004, IEEE region 10 conference – reference: Hall ET (1973) The silent language, Anchor Books. ISBN-13 978-0385055499 – reference: Ramage D (2007) Hidden Markov models fundamentals. Lecture notes. http://cs229.stanford.edu/section/cs229-hmm.pdf – reference: HoMFTsengCYLienCCHuangCLA multi-view vision- based hand motion capturing systemPattern Recogn20114444345310.1016/j.patcog.2010.08.0121211.68354 – reference: Sangineto EECupelliMReal-time viewpoint-invariant hand localization with cluttered backgroundsImage Vis Comput201230263710.1016/j.imavis.2011.11.004 – reference: Mgestyk (2009) http://www.mgestyk.com/ – reference: Hasan H, Abdul Kareem S (2012) Fingerprint image enhancement and recognition algorithms: a survey. Neural Comput Appl. doi:10.1007/s00521-012-1113-0 – reference: Hackenberg G, McCall R, Broll W (2011) Lightweight palm and finger tracking for real-time 3D gesture control. In: IEEE virtual reality conference (VR), pp 19–26 – reference: Rautaray SS, Agrawal A (2011) A novel human–computer interface based on hand gesture recognition using computer vision techniques. In: International conference on intelligent interactive technologies and multimedia (IITM-2011), pp 292–296 – reference: Ionescu D, Ionescu B, Gadea C, Islam S (2011) A multimodal interaction method that combines gestures and physical game controllers. In: Proceedings of 20th international conference on computer communications and networks (ICCCN), IEEE, pp 1–6 – reference: Birdal A, Hassanpour R (2008) Region based hand gesture recognition. In: 16th international conference in central Europe on computer graphics, visualization and computer vision, pp 17 – reference: Derpanis KG (2005) Mean shift clustering, lecture notes. http://www.cse.yorku.ca/kosta/CompVisNotes/meanshift.pdf – reference: Ionescu D, Ionescu B, Gadea C, Islam S (2011) An intelligent gesture interface for controlling TV sets and set-top boxes. In: 6th IEEE international symposium on applied computational intelligence and informatics, pp 159–164 – reference: Huang D, Tang W, Ding Y, Wan T, Wu X, Chen Y (2011) Motion capture of hand movements using stereo vision for minimally invasive vascular interventions. In: Sixth international conference on image and graphics, pp 737–742 – reference: HuangDYHuWCChangSHGabor filter-based hand-pose angle estimation for hand gesture recognition under varying illuminationExpert Syst Appl20113856031604210.1016/j.eswa.2010.11.016 – reference: Visser M, Hopf V (2011) Near and far distance gesture tracking for 3D applications In: 3DTV conference: the true vision-capture, transmission and display of 3D Vedio (3DTV-CON), pp 1–4 – reference: Hsieh CC, Liou DH , Lee D (2010) A real time hand gesture recognition system using motion history image. In: 2nd international conference on signal processing systems (ICSPS), pp 394–398 – reference: Schlomer T, Poppinga B, Henze N, Boll S (2008) Gesture recognition with a wii controller. In: TEI 08 Proceedings of the 2nd international conference on tangible and embedded interaction. ACM, New York, NY, USA, pp 11–14 – reference: IISU SDK (2012) http://www.softkinetic.com/Solutions/iisuSDK.aspx – reference: TranCTrivediMM3-D posture and gesture recognition for interactivity in smart spacesIEEE Trans Ind Inf20128117818710.1109/TII.2011.2172450 – reference: MitraSAcharyaTGesture recognition: a surveyIEEE Trans Syst Man Cybern, Part C Appl Rev200737331132410.1109/TSMCC.2007.893280 – reference: Bao J, Song A, Guo Y, Tang H (2011) Dynamic hand gesture recognition based on SURF tracking in international conference on electric information and control engineering (ICEICE), pp 338–341 – reference: Corera S, Krishnarajah N (2011) Capturing hand gesture movement: a survey on tools, techniques and logical considerations. In: Proceedings of chi sparks 2011 HCI research, innovation and implementation, Arnhem, Netherlands. http://proceedings.chi-sparks.nl/documents/Education-Gestures/FP-35-AC-EG.pdf – reference: Boulay B (2007) Human posture recognition for behavior understanding. PhD thesis, Universite de Nice-Sophia Antipolis – reference: Thirumuruganathan S (2010) A detailed introduction to K-nearest neighbor (KNN) algorithm. http://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-neighbor-knnalgorithm/ – reference: Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Kluwer Academic, Boston, pp 1–43 – reference: ChaudharyARahejaJLDasKRahejaSIntelligent approaches to interact with machines using hand gesture recognition in natural way: a surveyInt J Comput Sci Eng Survey (IJCSES)20112112213310.5121/ijcses.2011.2109 – reference: SymeonidisKHand gesture recognition using neural networksNeural Netw19961315 – reference: Henia OB, Bouakaz S (2011) 3D Hand model animation with a new data-driven method. In: Workshop on digital media and digital content management, IEEE, pp 72–76 – reference: He GF, Kang SK, Song WC, Jung ST (2011) Real-time gesture recognition using 3D depth camera. In: 2nd international conference on software engineering and service science (ICSESS), pp 187–190 – reference: Bellarbi A, Benbelkacem S, Zenati-Henda N, Belhocine M (2011) Hand gesture interaction using color-based method for tabletop interfaces. In: IEEE 7th international symposium on intelligent signal processing (WISP), pp 16 – reference: GorceMDLFleetDJParagiosNModel-based 3D hand pose estimation from monocular videoIEEE Trans Pattern Anal Mach Intell20113391793180510.1109/TPAMI.2011.33 – reference: Holzmann GJ (1991) Design and validation of computer protocols. Prentice Hall, New Jersey – reference: WohlerCAnlaufJKAn adaptable time-delay neural-network algorithm for image sequence analysisIEEE Trans Neural Netw19991061531153610.1109/72.809100 – reference: JainAKDuinRPWMaoJStatistical pattern recognition: a reviewPattern Anal Mach Intell, IEEE Trans200022143710.1109/34.824819 – reference: Wang GW, Zhang C, Zhuang J (2012) An application of classifier combination methods in hand gesture recognition, mathematical problems in engineering, vol 2012. Hindawi Publishing Corporation, pp 1–17. doi:10.1155/2012/346951 – reference: Kanniche MB (2009) Gesture recognition from video sequences. PhD Thesis, University of Nice 2009 – reference: Hand GKET (2011) http://sites.google.com/site/kinectapps/kinect – reference: Hasan H, Abdul Kareem S (2012) Static hand gesture recognition using neural networks. Artif Intell Rev. doi:10.1007/s10462-011-9303-1 – reference: BourkeABrienJOLyonsGEvaluation of a threshold-based tri-axial accelerometer fall detection algorithmGait Posture200726219419910.1016/j.gaitpost.2006.09.012 – reference: RautaraySSAgrawalAReal time hand gesture recognition system for dynamic applicationsInt J UbiComp201231213110.5121/iju.2012.3103 – reference: ChengJXieXBianWTaoDFeature fusion for 3D hand gesture recognition by learning a shared hidden spacePattern Recogn Lett20123347648410.1016/j.patrec.2010.12.009 – reference: Vsrkonyi-KczyARTusorBHuman–computer interaction for smart environment applications using fuzzy hand posture and gesture modelsIEEE Trans Instrum Meas20116051505151410.1109/TIM.2011.2108075 – reference: Derpanis KG (2004) A review of vision- based hand gestures. http://cvr.yorku.ca/members/gradstudents/kosta/publications/fileGesturereview.pdf – reference: Webel S, Keil J, Zoellner M (2008) Multi-touch gestural interaction in X3D using hidden markov models. In: VRST 08 Proceedings of the 2008 ACM symposium on virtual reality software and technology. ACM, New York, NY, USA, pp 263–264 – reference: Luo Q, Kong X, Zeng G, Fan J (2008) Human action detection via boosted local motion histograms. Mach Vis Appl. doi:10.1007/s00138-008-0168-5 – reference: Ju SX, Black MJ, Minneman S, Kimber D (1997) Analysis of gesture and action in technical talks for video indexing. Technical report. American Association for Artificial Intelligence. AAAI Technical Report SS-97-03 – reference: Lindsay J (2009) K-means classifier tutorial. http://www.uoguelph.ca/~hydrogeo/Whitebox/Help/kMeansClass.html – ident: 1481_CR2 doi: 10.1007/s00521-012-1113-0 – ident: 1481_CR53 doi: 10.1109/WISP.2011.6051717 – ident: 1481_CR26 – ident: 1481_CR3 doi: 10.1007/s10462-011-9303-1 – ident: 1481_CR55 – volume: 22 start-page: 4 issue: 1 year: 2000 ident: 1481_CR35 publication-title: Pattern Anal Mach Intell, IEEE Trans doi: 10.1109/34.824819 – volume: 13 start-page: 1 year: 1996 ident: 1481_CR13 publication-title: Neural Netw – ident: 1481_CR22 doi: 10.1109/AFGR.2002.1004190 – ident: 1481_CR65 – volume: 13 start-page: 474 issue: 3 year: 2011 ident: 1481_CR42 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2011.2120600 – ident: 1481_CR18 doi: 10.1109/IEMBS.2003.1280846 – ident: 1481_CR39 – ident: 1481_CR23 – ident: 1481_CR46 – ident: 1481_CR25 doi: 10.1007/s00138-008-0168-5 – ident: 1481_CR15 doi: 10.1145/1450579.1450644 – volume: 37 start-page: 311 issue: 3 year: 2007 ident: 1481_CR8 publication-title: IEEE Trans Syst Man Cybern, Part C Appl Rev doi: 10.1109/TSMCC.2007.893280 – ident: 1481_CR27 – ident: 1481_CR52 – ident: 1481_CR56 – volume: 38 start-page: 6031 issue: 5 year: 2011 ident: 1481_CR61 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.11.016 – ident: 1481_CR7 – volume: 2 start-page: 122 issue: 1 year: 2011 ident: 1481_CR9 publication-title: Int J Comput Sci Eng Survey (IJCSES) doi: 10.5121/ijcses.2011.2109 – volume: 44 start-page: 443 year: 2011 ident: 1481_CR60 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2010.08.012 – ident: 1481_CR12 doi: 10.1109/TENCON.2004.1414484 – ident: 1481_CR59 doi: 10.1109/ISVRI.2011.5759657 – ident: 1481_CR14 – ident: 1481_CR31 – volume: 54 start-page: 60 year: 2011 ident: 1481_CR10 publication-title: Commun ACM doi: 10.1145/1897816.1897838 – ident: 1481_CR66 – volume: 26 start-page: 194 issue: 2 year: 2007 ident: 1481_CR17 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.09.012 – ident: 1481_CR24 – ident: 1481_CR47 doi: 10.1109/ICCCN.2011.6006085 – ident: 1481_CR20 – ident: 1481_CR16 doi: 10.1145/1347390.1347395 – ident: 1481_CR28 – ident: 1481_CR30 – ident: 1481_CR49 doi: 10.1109/ICIG.2011.125 – volume: 10 start-page: 1531 issue: 6 year: 1999 ident: 1481_CR32 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.809100 – ident: 1481_CR45 doi: 10.1109/JCSSE.2011.5930116 – ident: 1481_CR4 – ident: 1481_CR11 – ident: 1481_CR34 – volume: 8 start-page: 178 issue: 1 year: 2012 ident: 1481_CR40 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2011.2172450 – ident: 1481_CR50 doi: 10.1109/SACI.2011.5872992 – volume: 81 start-page: 231 year: 2001 ident: 1481_CR6 publication-title: Comput Vis Image Underst doi: 10.1006/cviu.2000.0897 – ident: 1481_CR63 – ident: 1481_CR67 – volume: 3 start-page: 21 issue: 1 year: 2012 ident: 1481_CR41 publication-title: Int J UbiComp doi: 10.5121/iju.2012.3103 – ident: 1481_CR51 doi: 10.1109/WACV.2011.5711485 – ident: 1481_CR21 – ident: 1481_CR38 doi: 10.1155/2012/346951 – ident: 1481_CR29 – volume: 30 start-page: 26 year: 2012 ident: 1481_CR37 publication-title: Image Vis Comput doi: 10.1016/j.imavis.2011.11.004 – ident: 1481_CR57 doi: 10.1109/3DTV.2011.5877223 – ident: 1481_CR1 – ident: 1481_CR58 – ident: 1481_CR54 doi: 10.1109/VR.2011.5759431 – ident: 1481_CR33 – volume: 33 start-page: 1793 issue: 9 year: 2011 ident: 1481_CR44 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2011.33 – ident: 1481_CR62 doi: 10.1109/ICSPS.2010.5555462 – ident: 1481_CR48 doi: 10.1109/ICNC.2011.6022274 – volume: 33 start-page: 476 year: 2012 ident: 1481_CR36 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2010.12.009 – volume: 60 start-page: 1505 issue: 5 year: 2011 ident: 1481_CR43 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2011.2108075 – ident: 1481_CR19 – ident: 1481_CR64 – ident: 1481_CR5 doi: 10.1155/ASP.2005.2101 |
| SSID | ssj0004685 |
| Score | 1.9828622 |
| SecondaryResourceType | retracted_publication review_article |
| Snippet | Considerable effort has been put toward the development of intelligent and natural interfaces between users and computer systems. In line with this endeavor,... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 251 |
| SubjectTerms | Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Image Processing and Computer Vision Probability and Statistics in Computer Science Review |
| Title | RETRACTED ARTICLE: Human–computer interaction using vision-based hand gesture recognition systems: a survey |
| URI | https://link.springer.com/article/10.1007/s00521-013-1481-0 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3058 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF609eDF-sT6Yg-elIV0d5PN9lZLioKUEqv0FrKPiKBVkrbgzf_gP_SXuJsXFlTQWyCTECa7M9_szDcDwKmxfwqThCDKhUAUiwRxyhhyElcYdGF7oKl82AQbDv3JhI9KHndWVbtXKcncUtdkN3uCaUNfggyENxeroGm8nW_nNYQ3d1_IkPkcThO22JIeSqpU5nevWHZGy5nQ3MEMWv_6tE2wUeJJ2CsWwBZY0dNt0KpmNcBy6-6ApzAYh72-sVPQQNir_nXQhfkB_sfbu6ykbe-ItGA6QFsQfw8L6jmyvk5Be8gObT5qnmpYVx4Z2aIddNaFMczm6UK_7oLbQTDuX6Jy1AKSJkh1kCauLzpOzD1BcKI8zYRyMce-pi4nUiRYUSbNPcIVVi53vJiz2NHSc11L5CJ7oDF9nup9ABPNuFKy4ycdQn3pccFkrBNPS4WxQcdt4FQ6j2TZh9yOw3iM6g7KuTojo87IqjNy2uCsfuSlaMLxm_B59ZOicj9mP0sf_En6EKwbwESLAsAj0Jilc30M1uRi9pClJ6B5EQxH4Um-Hj8BkOnZMg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5aBb1YV6xrDp6UwDTJLOmtlJYWa5FapbdhsomgVWbagjf_g__QX2IyGxZU0NvAvBmGN8lb8t73PQDOjP2TmGiCKOMcUcw1YtT3kaNdbqILy4Em02ET_mAQjMfsOsdxJ0W3e1GSTC11CXazJ5g29SXIhPDmYhmsUOOwLGH-8ObuCxgyncNp0hbb0kNJUcr87hWLzmixEpo6mE71X5-2CTbyeBI2swWwBZbUZBtUi1kNMN-6O-Bp2B4Nmy1jp6AJYXutfrsB0wP8j7d3UUhb7og4QzpA2xB_DzPoObK-TkJ7yA5tPWoWK1h2HhnZjA46acAIJrN4rl53wW2nPWp1UT5qAQmTpDpIETfgdSdiHidYS0_5XLqY4UBRlxHBNZbUF-YeYRJLlzlexPzIUcJzXQvkInugMnmeqH0AtfKZlKIe6DqhgfAY90WktKeExNhExzXgFDoPRc5DbsdhPIYlg3KqztCoM7TqDJ0aOC8feclIOH4Tvih-Upjvx-Rn6YM_SZ-Cte7oqh_2e4PLQ7BugieaNQMegco0nqljsCrm04ckPknX5Cfx99p8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSgMxGA5aRbxYV6xrDp6U4DTJLOmt1BaLpZRapbdhsomgtcy0BW--g2_ok5jMUiyoIN4G5p9h-CfJv38fAGfm_JOYaIIo4xxRzDVi1PeRo11uvAuLgSZTsgm_2w2GQ9bLeU6Totu9KElmMw0WpWk0uRxLfTkffLPZTBsGE2TceXOxDFao7aO34frt_ZfByJST04Qwtr2HkqKs-d0rFg3TYlU0NTat8r8_cxNs5H4mrGcLYwssqdE2KBccDjDf0jvgud8c9OsNc35B49q2G51mDaaJ_Y-3d1FIW0yJOJuAgLZR_gFmI-nI2kAJbfId2jrVNFZw3pFkZDOY6KQGI5hM45l63QV3reagcY1yCgYkTPDqIEXcgFediHmcYC095XPpYoYDRV1GBNdYUl-Ye4RJLF3meBHzI0cJz3XtgBfZA6XRy0jtA6iVz6QU1UBXCQ2Ex7gvIqU9JSTGxmuuAKfQfyhyfHJLk_EUzpGVU3WGRp2hVWfoVMD5_JFxBs7xm_BF8cPCfJ8mP0sf_En6FKz1rlphp929OQTrxqeiWY_gEShN4qk6BqtiNnlM4pN0eX4Cp6vjYA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RETRACTED+ARTICLE%3A+Human%E2%80%93computer+interaction+using+vision-based+hand+gesture+recognition+systems%3A+a+survey&rft.jtitle=Neural+computing+%26+applications&rft.au=Hasan%2C+Haitham&rft.au=Abdul-Kareem%2C+Sameem&rft.date=2014-08-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=25&rft.issue=2&rft.spage=251&rft.epage=261&rft_id=info:doi/10.1007%2Fs00521-013-1481-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_013_1481_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |