Sparse signal recovery via minimax‐concave penalty and ‐norm loss function

In sparse signal recovery, to overcome the ‐norm sparse regularisation's disadvantages tendency of uniformly penalise the signal amplitude and underestimate the high‐amplitude components, a new algorithm based on a non‐convex minimax‐concave penalty is proposed, which can approximate the ‐norm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET signal processing Jg. 12; H. 9; S. 1091 - 1098
Hauptverfasser: Sun, Yuli, Chen, Hao, Tao, Jinxu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.12.2018
ISSN:1751-9675
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In sparse signal recovery, to overcome the ‐norm sparse regularisation's disadvantages tendency of uniformly penalise the signal amplitude and underestimate the high‐amplitude components, a new algorithm based on a non‐convex minimax‐concave penalty is proposed, which can approximate the ‐norm more accurately. Moreover, the authors employ the ‐norm loss function instead of the ‐norm for the residual error, as the ‐loss is less sensitive to the outliers in the measurements. To rise to the challenges introduced by the non‐convex non‐smooth problem, they first employ a smoothed strategy to approximate the ‐norm loss function, and then use the difference‐of‐convex algorithm framework to solve the non‐convex problem. They also show that any cluster point of the sequence generated by the proposed algorithm converges to a stationary point. The simulation result demonstrates the authors’ conclusions and indicates that the algorithm proposed in this study can obviously improve the reconstruction quality.
AbstractList In sparse signal recovery, to overcome the ‐norm sparse regularisation's disadvantages tendency of uniformly penalise the signal amplitude and underestimate the high‐amplitude components, a new algorithm based on a non‐convex minimax‐concave penalty is proposed, which can approximate the ‐norm more accurately. Moreover, the authors employ the ‐norm loss function instead of the ‐norm for the residual error, as the ‐loss is less sensitive to the outliers in the measurements. To rise to the challenges introduced by the non‐convex non‐smooth problem, they first employ a smoothed strategy to approximate the ‐norm loss function, and then use the difference‐of‐convex algorithm framework to solve the non‐convex problem. They also show that any cluster point of the sequence generated by the proposed algorithm converges to a stationary point. The simulation result demonstrates the authors’ conclusions and indicates that the algorithm proposed in this study can obviously improve the reconstruction quality.
Author Sun, Yuli
Chen, Hao
Tao, Jinxu
Author_xml – sequence: 1
  givenname: Yuli
  surname: Sun
  fullname: Sun, Yuli
  organization: Department of Electronic Engineering and Information Science University of Science and Technology of China Hefei People's Republic of China
– sequence: 2
  givenname: Hao
  surname: Chen
  fullname: Chen, Hao
  organization: Department of Electronic Engineering and Information Science University of Science and Technology of China Hefei People's Republic of China
– sequence: 3
  givenname: Jinxu
  surname: Tao
  fullname: Tao, Jinxu
  organization: Department of Electronic Engineering and Information Science University of Science and Technology of China Hefei People's Republic of China
BookMark eNp9kEtOwzAQhr0oEm3hAOx8gRRPHna8RBUvqYIFsLacsYOMUieyQ0R3HIEzchIc0RULVr80mm_m17ciC997S8gFsA2wUl46O2ZxCJucQb2poGALsgRRQSa5qE7JKsY3xipeQb4kD0-DDtHS6F697miw2E82HOjkNN077_b64_vzC3uPerJ0sGlpPFDtDU1j34c97foYafvucXS9PyMnre6iPT_mmrzcXD9v77Ld4-399mqXIRQFy0qsGTRMciNQ1G0rBcocG6uNbQxKXvOGG66NMMBFXefGVhILgSUrbUoo1gR-72JI74Nt1RBS13BQwNQsQSUJKklQswQ1S0iM-MOgG_Xcegzadf-QPx7oa_Q
CitedBy_id crossref_primary_10_1016_j_sigpro_2019_107369
crossref_primary_10_1016_j_neucom_2019_08_035
crossref_primary_10_1049_iet_spr_2019_0365
crossref_primary_10_1016_j_dsp_2025_105404
crossref_primary_10_1007_s10898_021_01028_9
crossref_primary_10_1016_j_acha_2022_07_002
crossref_primary_10_1016_j_knosys_2022_108230
crossref_primary_10_1007_s10878_022_00847_0
Cites_doi 10.1109/TSP.2017.2711501
10.1109/ICASSP.2016.7472557
10.1007/s10107-012-0629-5
10.1049/iet-ipr.2011.0312
10.1109/TNNLS.2012.2197412
10.1109/TSP.2017.2669904
10.1137/110840364
10.1088/1674-1056/23/7/078703
10.1109/TSP.2016.2598316
10.1002/ima.22156
10.1002/ima.22097
10.1109/TIP.2007.891805
10.1145/2339530.2339672
10.1016/j.ejor.2014.11.031
10.1109/TIT.2005.862083
10.1137/090777761
10.1109/TCSII.2013.2296133
10.1109/TIP.2011.2162418
10.1007/s00041-008-9045-x
10.1007/s10915-014-9930-1
10.1137/080716542
10.1609/aaai.v27i1.8605
10.1109/TIP.2013.2277821
10.1109/TCI.2017.2744626
10.1007/s10589-017-9954-1
10.1137/080725891
10.1137/140952363
10.1109/JSTSP.2009.2039181
10.1007/s10898-011-9765-3
10.1007/s10479-004-5022-1
10.1137/14098435X
10.3150/12-BEJ452
10.1002/0471725250
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1049/iet-spr.2018.5130
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 1098
ExternalDocumentID 10_1049_iet_spr_2018_5130
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
5GY
6IK
8FE
8FG
AAHJG
AAJGR
AAMMB
AAYXX
ABJCF
ABMDY
ABQXS
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
AEFGJ
AEGXH
AENEX
AFFHD
AFKRA
AGXDD
AIAGR
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IDLOA
IGS
IPLJI
ITC
J9A
K6V
K7-
L6V
LAI
M43
M7S
MCNEO
O9-
OK1
P2P
P62
PHGZM
PHGZT
PQGLB
PTHSS
RNS
RUI
S0W
UNMZH
WIN
~ZZ
ID FETCH-LOGICAL-c1330-4c801b096d7c78ff97c92cbeadebdc9686b6d6ad7d167882de59c37c404ec3713
ISSN 1751-9675
IngestDate Tue Nov 18 21:56:22 EST 2025
Wed Oct 29 21:22:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1330-4c801b096d7c78ff97c92cbeadebdc9686b6d6ad7d167882de59c37c404ec3713
OpenAccessLink https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-spr.2018.5130
PageCount 8
ParticipantIDs crossref_primary_10_1049_iet_spr_2018_5130
crossref_citationtrail_10_1049_iet_spr_2018_5130
PublicationCentury 2000
PublicationDate 2018-12-00
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-00
PublicationDecade 2010
PublicationTitle IET signal processing
PublicationYear 2018
References e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
Lou Y. (e_1_2_7_21_2) 2017; 74
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_2
e_1_2_7_39_2
Zhang T. (e_1_2_7_16_2) 2010; 11
References_xml – ident: e_1_2_7_37_2
  doi: 10.1109/TSP.2017.2711501
– ident: e_1_2_7_10_2
– ident: e_1_2_7_26_2
  doi: 10.1109/ICASSP.2016.7472557
– ident: e_1_2_7_38_2
  doi: 10.1007/s10107-012-0629-5
– ident: e_1_2_7_22_2
  doi: 10.1049/iet-ipr.2011.0312
– ident: e_1_2_7_13_2
  doi: 10.1109/TNNLS.2012.2197412
– ident: e_1_2_7_36_2
  doi: 10.1109/TSP.2017.2669904
– ident: e_1_2_7_14_2
  doi: 10.1137/110840364
– ident: e_1_2_7_6_2
  doi: 10.1088/1674-1056/23/7/078703
– ident: e_1_2_7_27_2
  doi: 10.1109/TSP.2016.2598316
– ident: e_1_2_7_7_2
  doi: 10.1002/ima.22156
– ident: e_1_2_7_5_2
  doi: 10.1002/ima.22097
– ident: e_1_2_7_23_2
  doi: 10.1109/TIP.2007.891805
– ident: e_1_2_7_18_2
  doi: 10.1145/2339530.2339672
– ident: e_1_2_7_29_2
  doi: 10.1016/j.ejor.2014.11.031
– ident: e_1_2_7_2_2
  doi: 10.1109/TIT.2005.862083
– ident: e_1_2_7_34_2
– ident: e_1_2_7_8_2
  doi: 10.1137/090777761
– volume: 11
  start-page: 1081
  year: 2010
  ident: e_1_2_7_16_2
  article-title: Analysis of multi‐stage convex relaxation for sparse regularization
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_7_15_2
  doi: 10.1109/TCSII.2013.2296133
– ident: e_1_2_7_24_2
  doi: 10.1109/TIP.2011.2162418
– ident: e_1_2_7_12_2
  doi: 10.1007/s00041-008-9045-x
– ident: e_1_2_7_20_2
  doi: 10.1007/s10915-014-9930-1
– ident: e_1_2_7_11_2
  doi: 10.1137/080716542
– volume: 74
  start-page: 1
  issue: 2
  year: 2017
  ident: e_1_2_7_21_2
  article-title: Fast L1–L2 minimization via a proximal operator
  publication-title: J. Sci. Comput.
– ident: e_1_2_7_19_2
  doi: 10.1609/aaai.v27i1.8605
– ident: e_1_2_7_25_2
  doi: 10.1109/TIP.2013.2277821
– ident: e_1_2_7_3_2
  doi: 10.1109/TCI.2017.2744626
– ident: e_1_2_7_35_2
  doi: 10.1007/s10589-017-9954-1
– ident: e_1_2_7_9_2
  doi: 10.1137/080725891
– ident: e_1_2_7_33_2
  doi: 10.1137/140952363
– ident: e_1_2_7_39_2
– ident: e_1_2_7_4_2
  doi: 10.1109/JSTSP.2009.2039181
– ident: e_1_2_7_31_2
  doi: 10.1007/s10898-011-9765-3
– ident: e_1_2_7_30_2
  doi: 10.1007/s10479-004-5022-1
– ident: e_1_2_7_32_2
  doi: 10.1137/14098435X
– ident: e_1_2_7_17_2
  doi: 10.3150/12-BEJ452
– ident: e_1_2_7_28_2
  doi: 10.1002/0471725250
SSID ssj0056512
Score 2.1181803
Snippet In sparse signal recovery, to overcome the ‐norm sparse regularisation's disadvantages tendency of uniformly penalise the signal amplitude and underestimate...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 1091
Title Sparse signal recovery via minimax‐concave penalty and ‐norm loss function
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  issn: 1751-9675
  databaseCode: 24P
  dateStart: 20130101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  omitProxy: false
  ssIdentifier: ssj0056512
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  issn: 1751-9675
  databaseCode: WIN
  dateStart: 20130101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://onlinelibrary.wiley.com
  omitProxy: false
  ssIdentifier: ssj0056512
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVgYAELxFMML3nBiigQ52V7idCgGQlVSBQYVlH8qBSpk4mm7ajs-AS-kS_hOHbS8BiJWbBJW9e9bXNu7sP35piQ5z3NWZGKmDOVxLCSdYw4WcRayMIoBLhZz6X36R2fzcTxsXwflrJX_XYCvG3Fdiu7_wo1xgC2u3X2EnCPQjGA5wAdR8CO4z8B_6FDrmoj15jRk_Zr16T5NTpv6sjxiJzU27HBAbmwdrsPdRZT156JaXyzRTQbLeFDI-f7RvxCIHt0MB--ovP3Ggw-sK8w9bbsy2bZ7NoHvH07rE93iwW-6tO028108YGJSSOHt5e8YADXb34yGtR0ojhyYh0dCenE0-Kl-KsVR9aCs9zYdbzqHGcrEy8LFso3vzBm_-bJxv7CvrKeywoiKoionIjKibhKrqW8kK737_PRbHDZCGp9WXz4N2P5W77641dMAphJJDK_TW6FFIK-9tDfIVdse5fcnBBL3iMzrwTUI0QHJaBQAhqU4Me37wF-GuCngJ9i2AFPHfB0AP4--fj2YP7mMA47Z8SaZRmuOY3AQyE7NVxzsVhIrmWqlWuOV0bLUpSqNGVtuGEIVkRqbCF1xnWe5BaPLHtA9trT1j4kFAlEkuV1agqJ3FsKVS7qvEiVSmyWKWb2STKcjkoHWnm3u8myuhCEffJi_EjnOVUunvzoMpMfkxs7LX1C9tZnG_uUXNfn62Z19qzH_CdSAXC-
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+signal+recovery+via+minimax%E2%80%90concave+penalty+and+%E2%80%90norm+loss+function&rft.jtitle=IET+signal+processing&rft.au=Sun%2C+Yuli&rft.au=Chen%2C+Hao&rft.au=Tao%2C+Jinxu&rft.date=2018-12-01&rft.issn=1751-9675&rft.volume=12&rft.issue=9&rft.spage=1091&rft.epage=1098&rft_id=info:doi/10.1049%2Fiet-spr.2018.5130&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_spr_2018_5130
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon