Deep Graph Convolutional Autoencoder With Conditional Normalizing Flow for Power Distribution Systems Fault Classification and Location

Accurate fault classification and location are critical to ensure the reliability and resilience of large-scale power distribution systems (PDSs). The existing data-driven works in this area struggle to capture essential space-time correlations of PDS measurements and often rely on deterministic and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on artificial intelligence Jg. 6; H. 9; S. 2448 - 2463
Hauptverfasser: Saffari, Mohsen, Khodayar, Mahdi, Khodayar, Mohammad E., Fazlhashemi, Seyed Saeed
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.09.2025
Schlagworte:
ISSN:2691-4581, 2691-4581
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurate fault classification and location are critical to ensure the reliability and resilience of large-scale power distribution systems (PDSs). The existing data-driven works in this area struggle to capture essential space-time correlations of PDS measurements and often rely on deterministic and shallow neural architectures. Furthermore, they encounter challenges such as over-smoothing and the inability to capture deep correlations. To overcome these limitations, a novel deep space-time generative graph convolutional autoencoder (SGGCA) is proposed. First, the PDS is modeled as a space-time graph where the nodes and edges show the bus measurements and line impedance values, respectively. The proposed SGGCA's encoder captures deep correlations of the space-time graph using a new graph convolution with early connections and identity transformations to mitigate the over-smoothing. Our encoder encompasses a new recurrent method to adjust graph convolution parameters without relying on node embeddings on the temporal dimension. Additionally, it incorporates generative modeling by capturing the probability distribution function of the latent representation through a conditional normalizing flow model. The extracted generative space-time features are enhanced by a multi-head attention mechanism to better capture task-relevant characteristics of the PDS measurements. The extracted features are fed to sparse decoders to classify and locate the faults in the PDS. The feature sparsity of decoders ensures a high generalization capacity and avoids overfitting. The proposed method is evaluated on the IEEE 69-bus and 123-bus systems. It achieves substantial improvements in fault classification accuracy by 3.33% and 6.26% and enhances fault location accuracy by 6.33% and 5.73% for the respective PDSs compared with state-of-the-art models.
AbstractList Accurate fault classification and location are critical to ensure the reliability and resilience of large-scale power distribution systems (PDSs). The existing data-driven works in this area struggle to capture essential space-time correlations of PDS measurements and often rely on deterministic and shallow neural architectures. Furthermore, they encounter challenges such as over-smoothing and the inability to capture deep correlations. To overcome these limitations, a novel deep space-time generative graph convolutional autoencoder (SGGCA) is proposed. First, the PDS is modeled as a space-time graph where the nodes and edges show the bus measurements and line impedance values, respectively. The proposed SGGCA's encoder captures deep correlations of the space-time graph using a new graph convolution with early connections and identity transformations to mitigate the over-smoothing. Our encoder encompasses a new recurrent method to adjust graph convolution parameters without relying on node embeddings on the temporal dimension. Additionally, it incorporates generative modeling by capturing the probability distribution function of the latent representation through a conditional normalizing flow model. The extracted generative space-time features are enhanced by a multi-head attention mechanism to better capture task-relevant characteristics of the PDS measurements. The extracted features are fed to sparse decoders to classify and locate the faults in the PDS. The feature sparsity of decoders ensures a high generalization capacity and avoids overfitting. The proposed method is evaluated on the IEEE 69-bus and 123-bus systems. It achieves substantial improvements in fault classification accuracy by 3.33% and 6.26% and enhances fault location accuracy by 6.33% and 5.73% for the respective PDSs compared with state-of-the-art models.
Author Saffari, Mohsen
Khodayar, Mahdi
Khodayar, Mohammad E.
Fazlhashemi, Seyed Saeed
Author_xml – sequence: 1
  givenname: Mohsen
  orcidid: 0000-0002-8336-8542
  surname: Saffari
  fullname: Saffari, Mohsen
  email: msaffari@pnw.edu
  organization: Department of Electrical and Computer Engineering, Purdue University Northwest, Hammond, IN, USA
– sequence: 2
  givenname: Mahdi
  orcidid: 0000-0003-4683-7810
  surname: Khodayar
  fullname: Khodayar, Mahdi
  email: mahdi-khodayar@utulsa.edu
  organization: Department of Computer Science, University of Tulsa, Tulsa, OK, USA
– sequence: 3
  givenname: Mohammad E.
  orcidid: 0000-0003-3856-5704
  surname: Khodayar
  fullname: Khodayar, Mohammad E.
  email: mkhodayar@smu.edu
  organization: Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, TX, USA
– sequence: 4
  givenname: Seyed Saeed
  orcidid: 0000-0003-4333-859X
  surname: Fazlhashemi
  fullname: Fazlhashemi, Seyed Saeed
  email: sfazlhashemi@smu.edu
  organization: Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, TX, USA
BookMark eNpNkMtOwkAUhidGExHZu3AxL1A8M23pdEmKIAlREzEum9PpqY4pHTJTJPgCvrblsmB1_pP_svhu2GVjG2LsTsBQCEgfluP5UIKMh2EcJSpRF6wnR6kIoliJyzN9zQbefwN0USGlTHrsb0K05jOH6y-e2ebH1pvW2AZrPt60lhptS3L8w7QHuzQn89m6Fdbm1zSffFrbLa-s469222UnxrfOFIcZ_rbzLa08n-KmbnlWo_emMhoPJjYlX9jjc8uuKqw9DU63z96nj8vsKVi8zObZeBFoEco2IK2TCkoA0gkSCY1S4YgUQggQRzKKRFEUMcSlKhCoUhFK0AhYUBoLUYV9Bsdd7az3jqp87cwK3S4XkO9Z5h3LfM8yP7HsKvfHiiGis3gK6Uio8B-PJ3W-
CODEN ITAICB
Cites_doi 10.1109/ONCON56984.2022.10126859
10.1109/TPWRD.2023.3268201
10.1109/TIA.2021.3083645
10.5555/3454287.3455008
10.3390/pr11082494
10.1109/ACCESS.2014.2323353
10.1016/j.tej.2022.107137
10.1002/ese3.1573
10.1016/j.energy.2018.06.111
10.1109/BDICN58493.2023.00039
10.1002/eng2.12950
10.1109/ISGT50606.2022.9817473
10.1016/j.epsr.2022.108085
10.1109/JSAC.2019.2951964
10.1016/j.epsr.2023.109998
10.1016/j.ijepes.2013.09.011
10.1017/ATSIP.2020.13
10.3390/app122311903
10.1561/2200000056
10.1109/PTC.2017.7980907
10.1007/s00202-021-01223-7
10.1016/j.ijepes.2021.107102
10.5121/ijdkp.2015.5201
10.1016/j.rser.2017.03.021
10.1007/s00521-021-06541-2
10.1109/ISGT59692.2024.10454243
10.1109/SEST50973.2021.9543326
10.1016/j.apenergy.2023.120932
10.1109/ICEEE2.2018.8391345
10.1016/j.asej.2023.102427
10.1016/B978-0-12-809633-8.20349-X
10.1109/TIM.2023.3238059
10.35833/MPCE.2022.000204
10.1016/j.measurement.2021.109330
10.1109/ACCESS.2020.2971582
10.1109/TNNLS.2023.3280078
10.1109/TPWRD.2018.2875598
10.1016/j.epsr.2020.106914
10.1109/TIA.2018.2885045
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TAI.2025.3547878
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2691-4581
EndPage 2463
ExternalDocumentID 10_1109_TAI_2025_3547878
10909618
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: ECCS-2223628; ECCS-2223629
  funderid: 10.13039/100000001
GroupedDBID 0R~
97E
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IEDLZ
IFIPE
JAVBF
M~E
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c132t-ecc7f0d00ec7aee1ca28a6e8a0300542441bbb505d8ba0ef84a20ca0abe9511f3
IEDL.DBID RIE
ISSN 2691-4581
IngestDate Sat Nov 29 07:35:57 EST 2025
Wed Sep 10 07:40:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c132t-ecc7f0d00ec7aee1ca28a6e8a0300542441bbb505d8ba0ef84a20ca0abe9511f3
ORCID 0000-0003-4333-859X
0000-0002-8336-8542
0000-0003-4683-7810
0000-0003-3856-5704
PageCount 16
ParticipantIDs ieee_primary_10909618
crossref_primary_10_1109_TAI_2025_3547878
PublicationCentury 2000
PublicationDate 2025-Sept.
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-Sept.
PublicationDecade 2020
PublicationTitle IEEE transactions on artificial intelligence
PublicationTitleAbbrev TAI
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
Dinh (ref35) 2016
ref17
ref16
Oono (ref34) 2019
ref38
ref19
ref18
Maaten (ref46) 2008; 9
Rusch (ref33) 2023
(ref37) 2024
ref24
ref23
Kipf (ref32) 2016
ref45
ref26
ref25
Hossin (ref39) 2015; 5
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Zhang (ref36) 2018; 31
ref40
References_xml – year: 2023
  ident: ref33
  article-title: A survey on oversmoothing in graph neural networks
– ident: ref45
  doi: 10.1109/ONCON56984.2022.10126859
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: ref46
  article-title: Visualizing data using T-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref9
  doi: 10.1109/TPWRD.2023.3268201
– ident: ref21
  doi: 10.1109/TIA.2021.3083645
– ident: ref42
  doi: 10.5555/3454287.3455008
– ident: ref1
  doi: 10.3390/pr11082494
– ident: ref4
  doi: 10.1109/ACCESS.2014.2323353
– ident: ref40
  doi: 10.1016/j.tej.2022.107137
– ident: ref12
  doi: 10.1002/ese3.1573
– ident: ref5
  doi: 10.1016/j.energy.2018.06.111
– ident: ref44
  doi: 10.1109/BDICN58493.2023.00039
– volume: 31
  volume-title: Proc. Adv. neural Inf. Process. Syst.
  year: 2018
  ident: ref36
  article-title: Generalized cross entropy loss for training deep neural networks with noisy labels
– ident: ref13
  doi: 10.1002/eng2.12950
– ident: ref15
  doi: 10.1109/ISGT50606.2022.9817473
– ident: ref19
  doi: 10.1016/j.epsr.2022.108085
– ident: ref26
  doi: 10.1109/JSAC.2019.2951964
– ident: ref6
  doi: 10.1016/j.epsr.2023.109998
– year: 2019
  ident: ref34
  article-title: Graph neural networks exponentially lose expressive power for node classification
– ident: ref11
  doi: 10.1016/j.ijepes.2013.09.011
– ident: ref29
  doi: 10.1017/ATSIP.2020.13
– ident: ref16
  doi: 10.3390/app122311903
– ident: ref30
  doi: 10.1561/2200000056
– year: 2016
  ident: ref35
  article-title: Density estimation using real NVP
– ident: ref14
  doi: 10.1109/PTC.2017.7980907
– ident: ref25
  doi: 10.1007/s00202-021-01223-7
– ident: ref27
  doi: 10.1016/j.ijepes.2021.107102
– volume: 5
  start-page: 1
  issue: 2
  year: 2015
  ident: ref39
  article-title: A review on evaluation metrics for data classification evaluations
  publication-title: Int. J. Data Mining Knowl. Manage. Process
  doi: 10.5121/ijdkp.2015.5201
– ident: ref3
  doi: 10.1016/j.rser.2017.03.021
– ident: ref7
  doi: 10.1007/s00521-021-06541-2
– year: 2016
  ident: ref32
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref20
  doi: 10.1109/ISGT59692.2024.10454243
– ident: ref31
  doi: 10.1109/SEST50973.2021.9543326
– ident: ref2
  doi: 10.1016/j.apenergy.2023.120932
– ident: ref17
  doi: 10.1109/ICEEE2.2018.8391345
– ident: ref23
  doi: 10.1016/j.asej.2023.102427
– ident: ref38
  doi: 10.1016/B978-0-12-809633-8.20349-X
– ident: ref22
  doi: 10.1109/TIM.2023.3238059
– ident: ref28
  doi: 10.35833/MPCE.2022.000204
– ident: ref43
  doi: 10.1016/j.measurement.2021.109330
– ident: ref24
  doi: 10.1109/ACCESS.2020.2971582
– ident: ref41
  doi: 10.1109/TNNLS.2023.3280078
– year: 2024
  ident: ref37
  article-title: Powerfactory
– ident: ref8
  doi: 10.1109/TPWRD.2018.2875598
– ident: ref18
  doi: 10.1016/j.epsr.2020.106914
– ident: ref10
  doi: 10.1109/TIA.2018.2885045
SSID ssj0002512227
Score 2.340944
Snippet Accurate fault classification and location are critical to ensure the reliability and resilience of large-scale power distribution systems (PDSs). The existing...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 2448
SubjectTerms Accuracy
Artificial intelligence
Conditional normalizing flow (CNF)
Convolution
Convolutional neural networks
Current measurement
Decoding
deep convolution network
deep spars architectures
fault classification
Fault location
Feature extraction
Logic gates
Transmission line measurements
Title Deep Graph Convolutional Autoencoder With Conditional Normalizing Flow for Power Distribution Systems Fault Classification and Location
URI https://ieeexplore.ieee.org/document/10909618
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2691-4581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512227
  issn: 2691-4581
  databaseCode: RIE
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2691-4581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512227
  issn: 2691-4581
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcBCeRRRHpUHFoa0TprUyVi1DSBB1aGIbpFfkSJVSVWSIjGw8rfxOS7qwsCWxLYU-bN1d_bd9yF0BxQhPo30_vYJd_wgGDhcsNQhcki5Ukrb-Fpsgs5m4XIZzW2xuqmF0e0m-Uz14NHc5ctCVHBU1ockQlAoaaAGpbQu1vo9UAFD7Xl0dxVJov5i9KQDQC_oDYC0CoTU9kzPnpaKMSVx658_cYKOrc-IRzXIp-hA5WeotdNjwHZ7nqPviVJr_AAU1Hhc5Fu7qmBoVRbAWCl197esNM0ys40zcFtX2ac2YjheFR9Y-7F4DuppeAK0ulYRC1tycxyzalVio6YJeUYGWsxyiZ-L-qWNXuPpYvzoWKEFR-hgtHQ0jDQlkhAlKFPKFcwL2VCFjACZPZTCuZxz7SvJkDOi0tBnHhGMMK60g-amgwvUzItcXSLs8yDVIZT2ypTre4JxKSOZ8jBgEoyk6KD7HQbJuubTSEwcQqJE45UAXonFq4PaMP17_eqZv_rj-zU6guF1BtgNapabSt2iQ7Ets_dNFzVevqZds2Z-AMjBxCE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIMFCeRRRnh5YGNI6adIkY1UIrShRhyK6RX5FilQlVUmKxB_gb-NzXNSFgS2JnSjyZ-vu7LvvQ-geKEJcP1Tr2yXMcj2vZzFOU4uIvs-klMrG12ITfhwH83k4NcXquhZGtevkM9mBS32WLwpewVZZF5IIQaFkF-15ruvYdbnW75YKmGrH8TeHkSTszgZjFQI6XqcHtFUgpbZlfLbUVLQxiZr__I1jdGS8RjyoYT5BOzI_Rc2NIgM2C_QMfT9KucTPQEKNh0W-NvMKXq3KAjgrher-npW6WWSmMQbHdZF9KTOGo0XxiZUni6egn4YfgVjXaGJhQ2-OI1otSqz1NCHTSIOLaS7wpKhvWugtepoNR5aRWrC4CkdLSwHpp0QQIrlPpbQ5dQLalwElQGcPxXA2Y0x5SyJglMg0cKlDOCWUSeWi2WnvHDXyIpcXCLvMS1UQpfwyabsOp0yIUKQs8KgAM8nb6GGDQbKsGTUSHYmQMFF4JYBXYvBqoxYM_1a_euQv_3h-hw5Gs9dJMhnHL1foED5V54Ndo0a5quQN2ufrMvtY3eqZ8wN668Y3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Graph+Convolutional+Autoencoder+With+Conditional+Normalizing+Flow+for+Power+Distribution+Systems+Fault+Classification+and+Location&rft.jtitle=IEEE+transactions+on+artificial+intelligence&rft.au=Saffari%2C+Mohsen&rft.au=Khodayar%2C+Mahdi&rft.au=Khodayar%2C+Mohammad+E.&rft.au=Fazlhashemi%2C+Seyed+Saeed&rft.date=2025-09-01&rft.pub=IEEE&rft.eissn=2691-4581&rft.volume=6&rft.issue=9&rft.spage=2448&rft.epage=2463&rft_id=info:doi/10.1109%2FTAI.2025.3547878&rft.externalDocID=10909618
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-4581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-4581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-4581&client=summon