Spatio-temporal Graph-Based Generation and Detection of Adversarial False Data Injection Evasion Attacks in Smart Grids

Smart power grids are vulnerable to security threats due to their cyber-physical nature. Existing data-driven detectors aim to address simple traditional false data injection attacks (FDIAs). However, adversarial false data injection evasion attacks (FDIEAs) present a more serious threat as adversar...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on artificial intelligence Ročník 5; číslo 12; s. 6601 - 6616
Hlavní autori: Takiddin, Abdulrahman, Ismail, Muhammad, Atat, Rachad, Serpedin, Erchin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.12.2024
Predmet:
ISSN:2691-4581, 2691-4581
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Smart power grids are vulnerable to security threats due to their cyber-physical nature. Existing data-driven detectors aim to address simple traditional false data injection attacks (FDIAs). However, adversarial false data injection evasion attacks (FDIEAs) present a more serious threat as adversaries, with different levels of knowledge about the system, inject adversarial samples to circumvent the grid's attack detection system. The robustness of state-of-the-art graph-based detectors has not been investigated against sophisticated FDIEAs. Hence, this article answers three research questions. 1) What is the impact of utilizing spatio-temporal features to craft adversarial samples and how to select attack nodes? 2) How can adversaries generate surrogate spatio-temporal data when they lack knowledge about the system topology? 3) What are the required model characteristics for a robust detection against adversarial FDIEAs? To answer the questions, we examine the robustness of several detectors against five attack cases and conclude the following: 1) Attack generation with full knowledge using spatio-temporal features leads to 5%-26% and 2%-5% higher degradation in detection rate (DR) compared to traditional FDIAs and using temporal features, respectively, whereas centrality analysis-based attack node selection leads to 3%-11% higher degradation in DR compared to a random selection; 2) Stochastic geometry-based graph generation to create surrogate adversarial topologies and samples leads to 3%-13% higher degradation in DR compared to traditional FDIAs; and 3) Adopting an unsupervised spatio-temporal graph autoencoder (STGAE)-based detector enhances the DR by 5<inline-formula><tex-math notation="LaTeX">-</tex-math></inline-formula>53% compared to benchmark detectors against FDIEAs.
AbstractList Smart power grids are vulnerable to security threats due to their cyber-physical nature. Existing data-driven detectors aim to address simple traditional false data injection attacks (FDIAs). However, adversarial false data injection evasion attacks (FDIEAs) present a more serious threat as adversaries, with different levels of knowledge about the system, inject adversarial samples to circumvent the grid's attack detection system. The robustness of state-of-the-art graph-based detectors has not been investigated against sophisticated FDIEAs. Hence, this article answers three research questions. 1) What is the impact of utilizing spatio-temporal features to craft adversarial samples and how to select attack nodes? 2) How can adversaries generate surrogate spatio-temporal data when they lack knowledge about the system topology? 3) What are the required model characteristics for a robust detection against adversarial FDIEAs? To answer the questions, we examine the robustness of several detectors against five attack cases and conclude the following: 1) Attack generation with full knowledge using spatio-temporal features leads to 5%-26% and 2%-5% higher degradation in detection rate (DR) compared to traditional FDIAs and using temporal features, respectively, whereas centrality analysis-based attack node selection leads to 3%-11% higher degradation in DR compared to a random selection; 2) Stochastic geometry-based graph generation to create surrogate adversarial topologies and samples leads to 3%-13% higher degradation in DR compared to traditional FDIAs; and 3) Adopting an unsupervised spatio-temporal graph autoencoder (STGAE)-based detector enhances the DR by 5<inline-formula><tex-math notation="LaTeX">-</tex-math></inline-formula>53% compared to benchmark detectors against FDIEAs.
Author Ismail, Muhammad
Atat, Rachad
Takiddin, Abdulrahman
Serpedin, Erchin
Author_xml – sequence: 1
  givenname: Abdulrahman
  orcidid: 0000-0003-4793-003X
  surname: Takiddin
  fullname: Takiddin, Abdulrahman
  email: a.takiddin@fsu.edu
  organization: Department of Electrical and Computer Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
– sequence: 2
  givenname: Muhammad
  orcidid: 0000-0002-8051-9747
  surname: Ismail
  fullname: Ismail, Muhammad
  email: mismail@tntech.edu
  organization: Department of Computer Science, Tennessee Tech University, Cookeville, TN, USA
– sequence: 3
  givenname: Rachad
  orcidid: 0000-0001-8075-6243
  surname: Atat
  fullname: Atat, Rachad
  email: rachad.atat@lau.edu.lb
  organization: Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
– sequence: 4
  givenname: Erchin
  orcidid: 0000-0001-9069-770X
  surname: Serpedin
  fullname: Serpedin, Erchin
  email: eserpedin@tamu.edu
  organization: Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
BookMark eNpNkMtuwjAQRa2KSqWUfRdd-AdCPX4EZ5nyKhJSF9B1ZOyxGgpJZEdU_fsmhQWrmdHcM4_7SAZVXSEhz8AmACx73eXrCWdcToRMpQK4I0OeZpBIpWFwkz-QcYwHxhhXwDmfDsnPtjFtWSctnpo6mCNdBdN8JW8moqMrrDD07YqaytE5tmj_q9rT3J0xRBPKjlmaY0Q6N62h6-pw1SzOJvYxb1tjvyMtK7o9mdB2G0oXn8i976nxNY7I53Kxm70nm4_VepZvEguCt4kTzmvnUAruQCovOAjmM6bBg5_67gcFU416nymrJRqbKuuUBMvR71PjxIiwy1wb6hgD-qIJZXfGbwGs6L0rOu-K3rvi6l2HvFyQEhFv5KmWWgrxB421bZo
CODEN ITAICB
Cites_doi 10.1109/TII.2022.3178418
10.1109/TPEL.2022.3206239
10.1109/TSP.2019.2955832
10.1109/GlobalSIP45357.2019.8969373
10.1109/CIT/IUCC/DASC/PICOM.2015.90
10.1109/ITNEC52019.2021.9587009
10.1109/TSG.2020.3010510
10.1109/AIPR50011.2020.9425190
10.1109/JSYST.2019.2927469
10.1109/TII.2023.3290942
10.1109/SP.2017.49
10.1109/TCYB.2021.3125345
10.1109/AIAM50918.2020.00033
10.1109/TPWRS.2021.3091616
10.1109/TPWRS.2016.2634318
10.1109/JSYST.2021.3136683
10.1109/JIOT.2022.3147040
10.1109/TSG.2016.2540439
10.1109/TSG.2020.3047864
10.1109/JIOT.2021.3113900
10.1109/JIOT.2020.2983911
10.1016/j.jisa.2019.02.008
10.1109/TETCI.2019.2902845
10.1109/TII.2021.3102332
10.1109/TSG.2022.3193989
10.1109/TSG.2021.3109628
10.1109/TSG.2019.2947148
10.1109/JSYST.2014.2341597
10.1109/TSG.2019.2949998
10.1103/PhysRevE.83.036106
10.1109/TPAS.1979.319407
10.1109/TNNLS.2023.3274538
10.1109/TAI.2023.3286831
10.1109/TAI.2021.3096489
10.1109/TSG.2010.2044814
10.1109/TPWRS.2010.2051168
10.23919/EUSIPCO55093.2022.9909779
10.2991/msam-17.2017.68
10.1109/TSG.2023.3261970
10.1109/TSG.2022.3204796
10.1109/JSYST.2021.3109082
10.1109/TII.2018.2825243
10.1109/TETCI.2022.3232821
10.1109/TII.2023.3281664
10.1007/978-0-387-30164-8
10.1007/978-3-319-33331-1_16
10.1109/CSCI.2017.1
10.1109/MITS.2014.2324023
10.1109/ACCESS.2023.3323617
10.1109/JSYST.2020.3030238
10.1109/JSYST.2022.3231897
10.1109/ACCESS.2019.2902910
10.1109/TAI.2021.3076021
10.1109/TII.2023.3331544
10.1145/3133956.3134057
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TAI.2024.3464511
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2691-4581
EndPage 6616
ExternalDocumentID 10_1109_TAI_2024_3464511
10684843
Genre orig-research
GrantInformation_xml – fundername: NSF EPCN
  grantid: 2220346; 2220347
GroupedDBID 0R~
97E
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IEDLZ
IFIPE
JAVBF
M~E
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c132t-d3df8dde432d145f32130f9081f1f7f2225178e8b95c84eac65cd541c2efb6ad3
IEDL.DBID RIE
ISSN 2691-4581
IngestDate Sat Nov 29 07:38:39 EST 2025
Wed Aug 27 07:40:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c132t-d3df8dde432d145f32130f9081f1f7f2225178e8b95c84eac65cd541c2efb6ad3
ORCID 0000-0002-8051-9747
0000-0001-9069-770X
0000-0003-4793-003X
0000-0001-8075-6243
PageCount 16
ParticipantIDs crossref_primary_10_1109_TAI_2024_3464511
ieee_primary_10684843
PublicationCentury 2000
PublicationDate 2024-Dec.
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.
PublicationDecade 2020
PublicationTitle IEEE transactions on artificial intelligence
PublicationTitleAbbrev TAI
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
Christie (ref44) 1962
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref41
Goodfellow (ref37) 2015
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
Christie (ref42) 1962
ref39
Raghunathan (ref38) 2020
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Kurakin (ref53) 2017
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref22
  doi: 10.1109/TII.2022.3178418
– ident: ref52
  doi: 10.1109/TPEL.2022.3206239
– ident: ref62
  doi: 10.1109/TSP.2019.2955832
– ident: ref17
  doi: 10.1109/GlobalSIP45357.2019.8969373
– ident: ref46
  doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.90
– ident: ref50
  article-title: Backcasted (actual) load profiles-historical
– ident: ref29
  doi: 10.1109/ITNEC52019.2021.9587009
– ident: ref32
  doi: 10.1109/TSG.2020.3010510
– ident: ref31
  doi: 10.1109/AIPR50011.2020.9425190
– volume-title: Univ. of Washington
  year: 1962
  ident: ref42
  article-title: Power systems test case archive: 14 bus power flow test case
– ident: ref18
  doi: 10.1109/JSYST.2019.2927469
– volume-title: Univ. of Washington
  year: 1962
  ident: ref44
  article-title: Power systems test case archive: 118 bus power flow test case
– ident: ref21
  doi: 10.1109/TII.2023.3290942
– ident: ref54
  doi: 10.1109/SP.2017.49
– ident: ref30
  doi: 10.1109/TCYB.2021.3125345
– ident: ref8
  doi: 10.1109/AIAM50918.2020.00033
– ident: ref1
  doi: 10.1109/TPWRS.2021.3091616
– ident: ref60
  doi: 10.1109/TPWRS.2016.2634318
– ident: ref19
  doi: 10.1109/JSYST.2021.3136683
– ident: ref34
  doi: 10.1109/JIOT.2022.3147040
– ident: ref45
  doi: 10.1109/TSG.2016.2540439
– ident: ref28
  doi: 10.1109/TSG.2020.3047864
– ident: ref14
  doi: 10.1109/JIOT.2021.3113900
– ident: ref15
  doi: 10.1109/JIOT.2020.2983911
– ident: ref9
  doi: 10.1016/j.jisa.2019.02.008
– ident: ref4
  doi: 10.1109/TETCI.2019.2902845
– ident: ref24
  doi: 10.1109/TII.2021.3102332
– ident: ref6
  doi: 10.1109/TSG.2022.3193989
– ident: ref23
  doi: 10.1109/TSG.2021.3109628
– ident: ref41
  doi: 10.1109/TSG.2019.2947148
– ident: ref7
  doi: 10.1109/JSYST.2014.2341597
– ident: ref10
  doi: 10.1109/TSG.2019.2949998
– ident: ref47
  doi: 10.1103/PhysRevE.83.036106
– ident: ref43
  doi: 10.1109/TPAS.1979.319407
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations (ICLR)
  year: 2017
  ident: ref53
  article-title: Adversarial examples in the physical world
– ident: ref55
  doi: 10.1109/TNNLS.2023.3274538
– ident: ref27
  doi: 10.1109/TAI.2023.3286831
– ident: ref58
  doi: 10.1109/TAI.2021.3096489
– ident: ref61
  doi: 10.1109/TSG.2010.2044814
– ident: ref49
  doi: 10.1109/TPWRS.2010.2051168
– ident: ref36
  doi: 10.23919/EUSIPCO55093.2022.9909779
– ident: ref59
  doi: 10.2991/msam-17.2017.68
– ident: ref25
  doi: 10.1109/TSG.2023.3261970
– ident: ref2
  doi: 10.1109/TSG.2022.3204796
– ident: ref3
  doi: 10.1109/JSYST.2021.3109082
– ident: ref20
  doi: 10.1109/TII.2018.2825243
– ident: ref5
  doi: 10.1109/TETCI.2022.3232821
– ident: ref26
  doi: 10.1109/TII.2023.3281664
– year: 2020
  ident: ref38
  article-title: Certified defenses against adversarial examples
– volume-title: Proc. Int. Conf. Learn. Representations (ICLR)
  year: 2015
  ident: ref37
  article-title: Explaining and harnessing adversarial examples
– ident: ref48
  doi: 10.1007/978-0-387-30164-8
– ident: ref57
  doi: 10.1007/978-3-319-33331-1_16
– ident: ref12
  doi: 10.1109/CSCI.2017.1
– ident: ref13
  doi: 10.1109/TSG.2020.3010510
– ident: ref40
  doi: 10.1109/MITS.2014.2324023
– ident: ref35
  doi: 10.1109/ACCESS.2023.3323617
– ident: ref56
  doi: 10.1109/JSYST.2020.3030238
– ident: ref51
  doi: 10.1109/JSYST.2022.3231897
– ident: ref11
  doi: 10.1109/ACCESS.2019.2902910
– ident: ref16
  doi: 10.1109/TAI.2021.3076021
– ident: ref33
  doi: 10.1109/TII.2023.3331544
– ident: ref39
  doi: 10.1145/3133956.3134057
SSID ssj0002512227
Score 2.2754688
Snippet Smart power grids are vulnerable to security threats due to their cyber-physical nature. Existing data-driven detectors aim to address simple traditional false...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 6601
SubjectTerms Accuracy
Artificial intelligence
Cyber-physical systems security
cyberattacks
Detectors
evasion attacks
false data injection attacks (FDIAs)
graph autoencoder
graph neural networks (GNNs)
machine learning
Robustness
Smart grids
Topology
Training
Title Spatio-temporal Graph-Based Generation and Detection of Adversarial False Data Injection Evasion Attacks in Smart Grids
URI https://ieeexplore.ieee.org/document/10684843
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2691-4581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512227
  issn: 2691-4581
  databaseCode: RIE
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2691-4581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512227
  issn: 2691-4581
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZoxcBCOYooR-WBhcGlPhI7Y4EWKkGF1CJ1i-JLKoIUtSls_HZsJ0VlYGCLIluJ_N7zO753AHAhreRRoiSyVkjEYqGdSGUUxZRIjTkmXR36zD7w0UhMp8lTVaweamGMMSH5zHT8Y8Dy9VytfKjMSXgsmGC0Bmqcx2Wx1k9AxStqQvgaiuwmV5Pe0DmAhHWoh-8w_qV6NmapBFUyaPzzJ_bAbmUzwl5J5H2wZfID0FjPY4CVeB6Cz3FIj0ZVu6lXeOe7UaNrp6g0LPtLezLALNfw1hQhCSuHcwvDVOZl5nkRDhw_GnibFRkc5i_VGmdv-6ga7BWFr8mHsxyO3xzTuS_M9LIJngf9yc09qgYrIOWczwJpqq1w9xqjRGMWWUqcJrOJsw4sttx6FxBzYYRMIiWYu5rjSOmIYUWMlXGm6RGo5_PcHANorIfTVdejqYxSljEaaw_Faiqp0wMtcLk-8_S97J-RBr-jm6SOPqmnT1rRpwWa_rg31pUnffLH-1Ow47eXySVnoF4sVuYcbKuPYrZctEHt8avfDjzyDaksu5M
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIMFCeYry9MDCkBI_kjhjoZRWlAqpReoWxbEtFUGK2hT-Pj4nRWVgYIsiy4l8d77Hdw-ErqSRURBn0jNGSI-HQlmRSpkXMioViQj1lesz248GAzEex89VsbqrhdFau-Qz3YRHh-WrabaAUJmV8FBwwdk62oDRWVW51k9IBVQ1pdESjPTjm1GrZ11AypsMADxCfimflWkqTpl06v_8jV20U1mNuFWSeQ-t6Xwf1ZcTGXAloAfoa-gSpL2q4dQbfoB-1N6tVVUKlx2mgRA4zRVu68KlYeV4arCbyzxPgRtxx3Kkxu20SHEvf63WWIsb4mq4VRRQlY8nOR6-W7azX5io-SF66dyP7rpeNVrBy6z7WXiKKSPszcYZVYQHhlGry0xs7QNDTGTACSSR0ELGQSa4vZzDIFMBJxnVRoapYkeolk9zfYywNgCoZz7gqZwxnnIWKgBjFZPMaoIGul6eefJRdtBInOfhx4mlTwL0SSr6NNAhHPfKuvKkT_54f4m2uqOnftLvDR5P0TZsVaaanKFaMVvoc7SZfRaT-ezCcco3KCu9qw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-temporal+Graph-Based+Generation+and+Detection+of+Adversarial+False+Data+Injection+Evasion+Attacks+in+Smart+Grids&rft.jtitle=IEEE+transactions+on+artificial+intelligence&rft.au=Takiddin%2C+Abdulrahman&rft.au=Ismail%2C+Muhammad&rft.au=Atat%2C+Rachad&rft.au=Serpedin%2C+Erchin&rft.date=2024-12-01&rft.pub=IEEE&rft.eissn=2691-4581&rft.volume=5&rft.issue=12&rft.spage=6601&rft.epage=6616&rft_id=info:doi/10.1109%2FTAI.2024.3464511&rft.externalDocID=10684843
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-4581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-4581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-4581&client=summon