AN EVALUATION OF A CONSTRAINED MULTI-OBJECTIVE GENETIC ALGORITHM
Real world optimization problems involve multiple conflicting objectives (such as minimizing cost while maximizing the quality of a product) and are subject to constraints (such as physical feasibility or budget limitations) which makes them interesting to solve. Over the last decades, evolutionary...
Saved in:
| Published in: | Journal of scientific perspectives Vol. 4; no. 2; p. 137 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Canakkale
Holistence Publications
12.05.2020
|
| Subjects: | |
| ISSN: | 2587-3008 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Real world optimization problems involve multiple conflicting objectives (such as minimizing cost while maximizing the quality of a product) and are subject to constraints (such as physical feasibility or budget limitations) which makes them interesting to solve. Over the last decades, evolutionary algorithms have been largely used in solving optimization problems in various fields of science. The aim of this study is to evaluate the performance of a constrained version of the Non-dominated Sorting Genetic Algorithm 2 (NSGA 2), a multi-objective evolutionary optimization algorithm, written in MATLAB. The developed NSGA 2 is compared, in terms of convergence and diversity of the obtained solutions, to a number of popular constrained multi-objective evolutionary algorithms from the literature. Widely used four benchmark problems (including CONSTR, OSY, SRN, and TNK problems) with varying difficulty and type of constraints are reviewed and used. The NSGA 2 obtained the lowest values of inverse generational distance (IGD) values for almost all the problems. These results show that the developed constrained NSGA 2 is an effective technique and is competitive to the other optimization methods in the literature. |
|---|---|
| AbstractList | Real world optimization problems involve multiple conflicting objectives (such as minimizing cost while maximizing the quality of a product) and are subject to constraints (such as physical feasibility or budget limitations) which makes them interesting to solve. Over the last decades, evolutionary algorithms have been largely used in solving optimization problems in various fields of science. The aim of this study is to evaluate the performance of a constrained version of the Non-dominated Sorting Genetic Algorithm 2 (NSGA 2), a multi-objective evolutionary optimization algorithm, written in MATLAB. The developed NSGA 2 is compared, in terms of convergence and diversity of the obtained solutions, to a number of popular constrained multi-objective evolutionary algorithms from the literature. Widely used four benchmark problems (including CONSTR, OSY, SRN, and TNK problems) with varying difficulty and type of constraints are reviewed and used. The NSGA 2 obtained the lowest values of inverse generational distance (IGD) values for almost all the problems. These results show that the developed constrained NSGA 2 is an effective technique and is competitive to the other optimization methods in the literature. |
| Author | Youssef ALIOUI ACAR, Reşat |
| Author_xml | – sequence: 1 fullname: Youssef ALIOUI – sequence: 2 givenname: Reşat surname: ACAR fullname: ACAR, Reşat |
| BookMark | eNotjUFPwyAYQInRxDl38ReQeKZ-QClwEyvrMF1JJt11qS09NKadq_v_W6Knl3d57wHdjtMYEXqikLBMA7wM8zFJE6D0Bi2YUJJwAHWPVvM8AADTGROZXKBXU2G7N2VtgvMV9mtscO6rz7AzrrLveFuXwRH_9mHz4PYWF7ayweXYlIXfubDZPqK7vvme4-qfS1Svbcg3pPSFy01JWsoZJUpFyWVGFUDaA__SWcojNJCKVjOtGaXQCR1Zx2VUqmWiu3rXRdWDanjUfIme_7rH0_RzjvPvYZjOp_G6PDAhBQjBKeUXpOFDKw |
| ContentType | Journal Article |
| Copyright | 2020. This work is published under http://creativecommons.org/licenses/by-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020. This work is published under http://creativecommons.org/licenses/by-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO EDSIH GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.26900/jsp.4.011 |
| DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Turkey Database ProQuest Central Student SciTech Collection (ProQuest) ProQuest Biological Science Collection Biological Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection Turkey Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: EDSIH name: Turkey Database (ProQuest) url: https://search.proquest.com/turkey sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2587-3008 |
| Genre | Correspondence |
| GroupedDBID | 8FE 8FH ABUWG ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU DWQXO EDSIH GNUQQ HCIFZ LK8 M7P OK1 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC |
| ID | FETCH-LOGICAL-c1321-88e737618004f03b9643e0a045c92992110d59e2d37e88c25d0d5dde8f08a3e93 |
| IEDL.DBID | M7P |
| IngestDate | Fri Jul 25 11:49:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1321-88e737618004f03b9643e0a045c92992110d59e2d37e88c25d0d5dde8f08a3e93 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Correspondence-1 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2575055311?pq-origsite=%requestingapplication% |
| PQID | 2575055311 |
| PQPubID | 2068960 |
| ParticipantIDs | proquest_journals_2575055311 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-12 |
| PublicationDateYYYYMMDD | 2020-05-12 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | Canakkale |
| PublicationPlace_xml | – name: Canakkale |
| PublicationTitle | Journal of scientific perspectives |
| PublicationYear | 2020 |
| Publisher | Holistence Publications |
| Publisher_xml | – name: Holistence Publications |
| SSID | ssj0002962567 |
| Score | 1.7224114 |
| Snippet | Real world optimization problems involve multiple conflicting objectives (such as minimizing cost while maximizing the quality of a product) and are subject to... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 137 |
| SubjectTerms | Algorithms Genetic algorithms Immunoglobulin D Optimization |
| Title | AN EVALUATION OF A CONSTRAINED MULTI-OBJECTIVE GENETIC ALGORITHM |
| URI | https://www.proquest.com/docview/2575055311 |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) databaseCode: M7P dateStart: 20180101 customDbUrl: isFulltext: true eissn: 2587-3008 dateEnd: 20210430 titleUrlDefault: http://search.proquest.com/biologicalscijournals omitProxy: false ssIdentifier: ssj0002962567 providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central databaseCode: BENPR dateStart: 20180101 customDbUrl: isFulltext: true eissn: 2587-3008 dateEnd: 20210430 titleUrlDefault: https://www.proquest.com/central omitProxy: false ssIdentifier: ssj0002962567 providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database databaseCode: PIMPY dateStart: 20180101 customDbUrl: isFulltext: true eissn: 2587-3008 dateEnd: 20210430 titleUrlDefault: http://search.proquest.com/publiccontent omitProxy: false ssIdentifier: ssj0002962567 providerName: ProQuest – providerCode: PRVPQU databaseName: Turkey Database (ProQuest) databaseCode: EDSIH dateStart: 20180101 customDbUrl: isFulltext: true eissn: 2587-3008 dateEnd: 20210430 titleUrlDefault: https://search.proquest.com/turkey omitProxy: false ssIdentifier: ssj0002962567 providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4UPHjxR9T4A0kPXgtdx7b2pBOGLIFtwUHwRLZ2S_QAyNC_39cx9GDixVPT9NK0L1-_7_XlfQjdgeihScpsIlJHkk6qNA6ajCRMApeTji0qswknCPhsJqIq4VZUZZU7TCyBWi2lzpG3IbTgsYaIMe5X70S7Runf1cpCYx_VdZcEsyzdi75zLEwAu7edbVdSBjqQtt-KVavToobxC3vLB6V__N-tnKCjikpid3v3p2gvW5yhBzfA3tQdTsrcEw772MXdMNDWyH7g9fBoMox9EpYuJ_7Uw7p0Lfa72B0-hWM_HozO0aTvxd0BqVwSiAQlaRDOMwdQwgDm18mpmeoGWxlNgKpJoD5CCzxliYwp08k4l8xSMAdQ4znliZkJ8wLVFstFdomwaQk7pSKlisqO4lZqicQxcg6kxMxZoq5QY3cg8yrUi_nPaVz_vXyDDpkWq7r1KWug2mb9kd2iA_m5eS3WTVR_9IJoDKPXe_YHzfImYRb5o-jlCyZfoJg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT8IwGG4ImOjFj6jxA7UHPQ66bmPtwejChyyMQcwgeMKt6xI9ADLU-Kf8jb6FTQ8m3jh4XHbZ1qdPn-dd-z4IXYLpIWFEaxqPbKGZUax40KBaSAVoOWHXeBY2Yfs-G414v4A-87MwaltlzolLoo6nQtXIqwAtWKwBMfrN7EVTqVHq72oeobGCRUd-vINlS6_dBozvFaWtZlBva1mqgCbAeekaY9KGWaWDUjITYkSqIZUkIUgbAVKBK0MUW1zS2LAlY4JaMVwDCbCEsNCQqvkSUH7JBLCzIir13W7_4buqQzn4iZq96oNKwXmS6nM6q5gVouu_2H65hLV2_tvL76LtTCxjZ4XuPVSQk3106_i4OXS8wbK6hnst7OB6z1fhz67fbODuwAtcrbfMcXGHTaw25wVuHTveXe_eDdrdAzRYy0MfouJkOpFHCBsWr0WERyQmwoyZFVk8tPWEgewyEhrGx6icD8A4m8zp-Ofrn_x9-wJttoOuN_Zcv3OKtqiy5qrRKy2j4mL-Ks_QhnhbPKXz8ww3GD2ue7S-AAyx9l8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AN+EVALUATION+OF+A+CONSTRAINED+MULTI-OBJECTIVE+GENETIC+ALGORITHM&rft.jtitle=Journal+of+scientific+perspectives&rft.au=Youssef+ALIOUI&rft.au=ACAR%2C+Re%C5%9Fat&rft.date=2020-05-12&rft.pub=Holistence+Publications&rft.eissn=2587-3008&rft.volume=4&rft.issue=2&rft.spage=137&rft_id=info:doi/10.26900%2Fjsp.4.011 |