On the Cauchy integral theorem and Polish spaces

We prove that if a continuous function $f$ in an open subset $U\subset\mathbb{C}$ is analytic in $U\setminus X$, where $X\subset U$ is a Polish space having characteristic system $(k,n)\in\mathbb N_0\times\mathbb N$, then the complex line integral of $f$ along the boundary of any triangle in $U$ van...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:New Zealand journal of mathematics Ročník 56; s. 45 - 51
Hlavní autoři: López Morales, Cristian, Ramírez Maluendas, Camilo
Médium: Journal Article
Jazyk:angličtina
Vydáno: 14.08.2025
ISSN:1179-4984, 1179-4984
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We prove that if a continuous function $f$ in an open subset $U\subset\mathbb{C}$ is analytic in $U\setminus X$, where $X\subset U$ is a Polish space having characteristic system $(k,n)\in\mathbb N_0\times\mathbb N$, then the complex line integral of $f$ along the boundary of any triangle in $U$ vanishes.
ISSN:1179-4984
1179-4984
DOI:10.53733/422