On the Cauchy integral theorem and Polish spaces
We prove that if a continuous function $f$ in an open subset $U\subset\mathbb{C}$ is analytic in $U\setminus X$, where $X\subset U$ is a Polish space having characteristic system $(k,n)\in\mathbb N_0\times\mathbb N$, then the complex line integral of $f$ along the boundary of any triangle in $U$ van...
Uložené v:
| Vydané v: | New Zealand journal of mathematics Ročník 56; s. 45 - 51 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
14.08.2025
|
| ISSN: | 1179-4984, 1179-4984 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We prove that if a continuous function $f$ in an open subset $U\subset\mathbb{C}$ is analytic in $U\setminus X$, where $X\subset U$ is a Polish space having characteristic system $(k,n)\in\mathbb N_0\times\mathbb N$, then the complex line integral of $f$ along the boundary of any triangle in $U$ vanishes. |
|---|---|
| ISSN: | 1179-4984 1179-4984 |
| DOI: | 10.53733/422 |