A study on unification of generalized hypergeometric function and Mittag-Leffler function with certain integral transforms of generalized basic hypergeometric function

This research article explores some new properties of generalized hypergeometric function and its q-analogue. The connections between _{2}{{R}_{1}}^{\upsilon }(\mathfrak{z})$, the Wright function, and generalized Mittag-Leffler functions are explored. The authors introduce the q-analogue of generali...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Researches in mathematics (Online) Ročník 32; číslo 1; s. 16 - 32
Hlavní autoři: Chaudhary, K.K., Rao, S.B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oles Honchar Dnipro National University 08.07.2024
Témata:
ISSN:2664-4991, 2664-5009
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This research article explores some new properties of generalized hypergeometric function and its q-analogue. The connections between _{2}{{R}_{1}}^{\upsilon }(\mathfrak{z})$, the Wright function, and generalized Mittag-Leffler functions are explored. The authors introduce the q-analogue of generalized hypergeometric function denoted by _{2}{{R}_{1}}^{\upsilon ,q}(\mathfrak{z})$ and discuss its properties and connections with q-Wright function and q-versions of generalized Mittag-Leffler functions. We get the q-integral transforms such as q-Mellin, q-Euler (beta), q-Laplace, q-sumudu, and q-natural transforms of Wright-type generalized q-hypergeometric function. This article contributes to the understanding of hypergeometric functions in q-calculus.
ISSN:2664-4991
2664-5009
DOI:10.15421/242402