A study on unification of generalized hypergeometric function and Mittag-Leffler function with certain integral transforms of generalized basic hypergeometric function
This research article explores some new properties of generalized hypergeometric function and its q-analogue. The connections between _{2}{{R}_{1}}^{\upsilon }(\mathfrak{z})$, the Wright function, and generalized Mittag-Leffler functions are explored. The authors introduce the q-analogue of generali...
Uloženo v:
| Vydáno v: | Researches in mathematics (Online) Ročník 32; číslo 1; s. 16 - 32 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oles Honchar Dnipro National University
08.07.2024
|
| Témata: | |
| ISSN: | 2664-4991, 2664-5009 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This research article explores some new properties of generalized hypergeometric function and its q-analogue. The connections between _{2}{{R}_{1}}^{\upsilon }(\mathfrak{z})$, the Wright function, and generalized Mittag-Leffler functions are explored. The authors introduce the q-analogue of generalized hypergeometric function denoted by _{2}{{R}_{1}}^{\upsilon ,q}(\mathfrak{z})$ and discuss its properties and connections with q-Wright function and q-versions of generalized Mittag-Leffler functions. We get the q-integral transforms such as q-Mellin, q-Euler (beta), q-Laplace, q-sumudu, and q-natural transforms of Wright-type generalized q-hypergeometric function. This article contributes to the understanding of hypergeometric functions in q-calculus. |
|---|---|
| ISSN: | 2664-4991 2664-5009 |
| DOI: | 10.15421/242402 |