Carathodory's theorem in depth
Let X be a finite set of points in RdRd . The Tukey depth of a point q with respect to X is the minimum number tX(q)tX(q) of points of X in a halfspace containing q. In this paper we prove a depth version of Carathéodory’s theorem. In particular, we prove that there exist a constant c (that depends...
Uloženo v:
| Hlavní autoři: | , |
|---|---|
| Médium: | Publikace |
| Jazyk: | angličtina |
| Vydáno: |
01.07.2017
|
| Témata: | |
| ISSN: | 0179-5376 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let X be a finite set of points in RdRd . The Tukey depth of a point q with respect to X is the minimum number tX(q)tX(q) of points of X in a halfspace containing q. In this paper we prove a depth version of Carathéodory’s theorem. In particular, we prove that there exist a constant c (that depends only on d and tX(q)tX(q) ) and pairwise disjoint sets X1,…,Xd+1¿XX1,…,Xd+1¿X such that the following holds. Each XiXi has at least c|X| points, and for every choice of points xixi in XiXi , q is a convex combination of x1,…,xd+1x1,…,xd+1 . We also prove depth versions of Helly’s and Kirchberger’s theorems. |
|---|---|
| ISSN: | 0179-5376 |
| DOI: | 10.1007/s00454-017-9893-8 |