A two-stage iterated greedy algorithm for distributed blocking flowshop scheduling problem

This paper deals with the distributed blocking flowshop scheduling problem (DBFSP), a critical challenge in modern manufacturing systems involving multiple factories. Each factory operates as a blocking flowshop without intermediate buffers between successive machines. The objective of DBFSP is to m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 300; s. 130422
Hlavní autoři: Zhang, Sen, Qian, Bin, Hu, Rong, Li, Kun, Yang, Jian-Bo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 05.03.2026
Témata:
ISSN:0957-4174
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper deals with the distributed blocking flowshop scheduling problem (DBFSP), a critical challenge in modern manufacturing systems involving multiple factories. Each factory operates as a blocking flowshop without intermediate buffers between successive machines. The objective of DBFSP is to minimize the makespan among all factories. First, a mixed integer linear programming model (MILP) is presented based on the positions of jobs. Second, by analyzing problem-specific properties, we prove two theorems: (1) removing a job from a factory reduces the factory’s makespan, and (2) inserting a new job into a factory increases the factory’s makespan. Then, an effective two-stage iterated greedy (TIG) algorithm is proposed. TIG includes a constructive heuristic method, a local search procedure with a multi-neighborhood structure designed according to the above two theorems, and a novel destruction and construction combining the total blocking time and idle time of each job. Finally, results of experiments on 720 benchmark instances demonstrate that the proposed TIG algorithm outperforms state-of-the-art DBFSP methods. In addition, 320 out of 720 instances achieve new best-known solutions with significant margins.
AbstractList This paper deals with the distributed blocking flowshop scheduling problem (DBFSP), a critical challenge in modern manufacturing systems involving multiple factories. Each factory operates as a blocking flowshop without intermediate buffers between successive machines. The objective of DBFSP is to minimize the makespan among all factories. First, a mixed integer linear programming model (MILP) is presented based on the positions of jobs. Second, by analyzing problem-specific properties, we prove two theorems: (1) removing a job from a factory reduces the factory’s makespan, and (2) inserting a new job into a factory increases the factory’s makespan. Then, an effective two-stage iterated greedy (TIG) algorithm is proposed. TIG includes a constructive heuristic method, a local search procedure with a multi-neighborhood structure designed according to the above two theorems, and a novel destruction and construction combining the total blocking time and idle time of each job. Finally, results of experiments on 720 benchmark instances demonstrate that the proposed TIG algorithm outperforms state-of-the-art DBFSP methods. In addition, 320 out of 720 instances achieve new best-known solutions with significant margins.
ArticleNumber 130422
Author Zhang, Sen
Qian, Bin
Li, Kun
Yang, Jian-Bo
Hu, Rong
Author_xml – sequence: 1
  givenname: Sen
  surname: Zhang
  fullname: Zhang, Sen
  email: Sen_Zhang0703@163.com
  organization: School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
– sequence: 2
  givenname: Bin
  orcidid: 0000-0002-0048-1487
  surname: Qian
  fullname: Qian, Bin
  organization: School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
– sequence: 3
  givenname: Rong
  orcidid: 0000-0002-5000-6625
  surname: Hu
  fullname: Hu, Rong
  email: ronghu@vip.163.com
  organization: School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
– sequence: 4
  givenname: Kun
  surname: Li
  fullname: Li, Kun
  organization: School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
– sequence: 5
  givenname: Jian-Bo
  orcidid: 0000-0001-8953-1550
  surname: Yang
  fullname: Yang, Jian-Bo
  email: jian-bo.yang@manchester.ac.uk
  organization: Alliance Manchester Business School, University of Manchester, Manchester M15 6PB, United Kingdom
BookMark eNp9kMtKAzEUhrOoYFt9AVd5gRlz6yQFN6V4A8GNbtyEXE6mqdNJSaaWvr0d6trVgcP5Dv__zdCkTz0gdEdJTQlt7rc1lKOpGWGLmnIiGJugKVkuZCWoFNdoVsqWECoJkVP0tcLDMVVlMC3gOEA2A3jcZgB_wqZrU47DZodDytjHMuRoD-OB7ZL7jn2LQ5eOZZP2uLgN-EM37vY52Q52N-gqmK7A7d-co8-nx4_1S_X2_vy6Xr1VjjIhK-Wd9BL8UihvJTDg3DYQaHBMgVXNwjeGgyLBWck9W0rlBDHndsp7boTkc8Quf11OpWQIep_jzuSTpkSPRvRWj0b0aERfjJyhhwsE52Q_EbIuLkLvwMcMbtA-xf_wX-oJcCE
Cites_doi 10.26599/TST.2021.9010009
10.1016/j.cie.2020.106638
10.1016/j.eswa.2020.114495
10.1016/j.ijpe.2013.05.004
10.1016/j.eswa.2019.01.062
10.3390/math11030581
10.1016/j.knosys.2025.113424
10.1016/j.eswa.2023.120571
10.1016/0377-2217(93)90182-M
10.1016/j.ejor.2020.01.065
10.1016/j.ejor.2014.05.024
10.1109/TCYB.2020.3041494
10.1016/j.cie.2018.03.014
10.1109/TSMC.2024.3358383
10.1016/j.swevo.2024.101559
10.1016/j.omega.2023.102997
10.1080/00207543.2024.2390979
10.1016/j.asoc.2023.110029
10.1016/j.cie.2017.07.020
10.1007/s12597-020-00484-3
10.1016/j.cor.2022.105733
10.1080/00207543.2011.644819
10.1109/TETCI.2022.3174915
10.1016/j.cor.2009.06.019
10.1016/j.cor.2022.106009
10.1007/s12293-025-00454-6
10.1016/j.cie.2022.108366
10.1016/j.jmsy.2023.12.006
10.1016/j.ejor.2021.11.023
10.1007/s10845-014-0890-y
10.1016/j.eswa.2020.113678
10.1016/j.cor.2024.106850
10.1109/TSMC.2022.3198829
10.1016/j.omega.2018.03.004
10.1016/j.cor.2008.12.004
10.1016/j.eswa.2023.121149
10.1080/0305215X.2013.827673
10.1016/j.engappai.2018.09.005
10.1109/TSMC.2023.3256484
10.1287/opre.26.1.36
10.1109/TSMC.2024.3370376
10.1080/00207543.2014.948578
10.1016/j.knosys.2020.105527
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2025.130422
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2025_130422
S0957417425040370
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ABUFD
ACDAQ
ACGFS
ACHRH
ACLOT
ACNTT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
~HD
29G
9DU
AAAKG
AAQXK
AAYXX
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY1
LY7
M41
R2-
SBC
SET
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c1247-8dc7d7ed948db7e2e33b6ef1fc28eb865d6a3e80fcb73d2978c40a2028dd3a473
ISSN 0957-4174
IngestDate Thu Nov 27 00:48:47 EST 2025
Sat Nov 29 17:07:55 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Distributed blocking flowshop
Local search
Iterated greedy algorithm
Makespan
Scheduling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1247-8dc7d7ed948db7e2e33b6ef1fc28eb865d6a3e80fcb73d2978c40a2028dd3a473
ORCID 0000-0002-0048-1487
0000-0001-8953-1550
0000-0002-5000-6625
ParticipantIDs crossref_primary_10_1016_j_eswa_2025_130422
elsevier_sciencedirect_doi_10_1016_j_eswa_2025_130422
PublicationCentury 2000
PublicationDate 2026-03-05
PublicationDateYYYYMMDD 2026-03-05
PublicationDate_xml – month: 03
  year: 2026
  text: 2026-03-05
  day: 05
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shao, Shao, Pi (b0265) 2022; 7
Gonzalez, Sahni (b0030) 1978; 26
Naderi, Ruiz (b0070) 2014; 239
Shao, Pi, Shao (b0150) 2017
Pan (b0125) 2024
Taillard (b0240) 1993; 64
A, I.R., R.C. B, and T.M. C (b0250) 2017
Miyata, Nagano (b0180) 2022
Ali, Gajpal, Elmekkawy (b0105) 2021; 58
Gao, Chen, Deng (b0060) 2013; 51
A, Z.S., W.S. B, and D.P.C. D, Effective heuristics and metaheuristics for the distributed fuzzy blocking flow-shop scheduling problem. Swarm and Evolutionary Computation.
Ruiz, Pan, Naderi (b0090) 2019; 83
Fernandez-Viagas, Framinan (b0080) 2015; 53
B, y.z.l.a. (b0195) 2021
Zhang (b0145) 2024; 87
Han (b0225) 2025; 63
Zhao (b0015) 2023; 230
Wang (b0065) 2013; 145
.
Fernandez-Viagas, Perez-Gonzalez, Framinan (b0095) 2018; 118
Song, Lin, Chen (b0020) 2025; 173
Zhao (b0230) 2024; 54
He (b0140) 2024; 123
Karabulut (b0110) 2022; 142
Li (b0190) 2025; 317
Wang (b0025) 2024; 72
Xu (b0075) 2014; 46
Pan (b0100) 2019; 124
Chen, Pan, Gao (b0170) 2021; 71
Naderi, Ruiz (b0050) 2010; 37
Gao, Chen (b0055) 2011; 4
Qian (b0200) 2022; 53
Luo, Gong, Lu (b0235) 2024; 235
Yu, Zhang, Huang (b0120) 2023; 135
Zhao (b0260) 2020; 160
Mao (b0245) 2021; 169
Zhang, Han, Wang, Kaizhou (b0185) 2023; 11
Luo (b0215) 2025
Yanıkoğlu, Yavuz (b0035) 2022; 301
Bargaoui, Driss, Ghédira (b0085) 2017; 111
Zhao, Zhou, Wang (b0115) 2023; 53
Pan, Gao, Wang (b0135) 2020; 52
Shao, Shao, Pi (b0205) 2020
Li (b0130) 2020; 147
Zhang, Xing, Cao (b0160) 2018; 76
Fu (b0010) 2021; 26
Behnamian, Fatemi Ghomi (b0005) 2016; 27
Muter (b0040) 2020; 285
Avci, Avci, Hamzadayı (b0045) 2022; 148
Zhang (b0210) 2025; 17
A, k.k. (b0175) 2021
Wang (b0220) 2010; 37
Companys, Ribas (b0155) 2016
Shao, Pi, Shao (b0165) 2019; 145
Avci (10.1016/j.eswa.2025.130422_b0045) 2022; 148
Gonzalez (10.1016/j.eswa.2025.130422_b0030) 1978; 26
Fu (10.1016/j.eswa.2025.130422_b0010) 2021; 26
Ruiz (10.1016/j.eswa.2025.130422_b0090) 2019; 83
Li (10.1016/j.eswa.2025.130422_b0130) 2020; 147
A, I.R., R.C. B, and T.M. C (10.1016/j.eswa.2025.130422_b0250) 2017
Shao (10.1016/j.eswa.2025.130422_b0165) 2019; 145
Fernandez-Viagas (10.1016/j.eswa.2025.130422_b0095) 2018; 118
Zhao (10.1016/j.eswa.2025.130422_b0015) 2023; 230
Gao (10.1016/j.eswa.2025.130422_b0055) 2011; 4
Chen (10.1016/j.eswa.2025.130422_b0170) 2021; 71
Yu (10.1016/j.eswa.2025.130422_b0120) 2023; 135
Companys (10.1016/j.eswa.2025.130422_b0155) 2016
Qian (10.1016/j.eswa.2025.130422_b0200) 2022; 53
Wang (10.1016/j.eswa.2025.130422_b0065) 2013; 145
Zhao (10.1016/j.eswa.2025.130422_b0230) 2024; 54
B, y.z.l.a. (10.1016/j.eswa.2025.130422_b0195) 2021
Mao (10.1016/j.eswa.2025.130422_b0245) 2021; 169
Li (10.1016/j.eswa.2025.130422_b0190) 2025; 317
10.1016/j.eswa.2025.130422_b0255
Zhang (10.1016/j.eswa.2025.130422_b0210) 2025; 17
Pan (10.1016/j.eswa.2025.130422_b0125) 2024
Ali (10.1016/j.eswa.2025.130422_b0105) 2021; 58
Shao (10.1016/j.eswa.2025.130422_b0205) 2020
Shao (10.1016/j.eswa.2025.130422_b0265) 2022; 7
Pan (10.1016/j.eswa.2025.130422_b0100) 2019; 124
Xu (10.1016/j.eswa.2025.130422_b0075) 2014; 46
Wang (10.1016/j.eswa.2025.130422_b0025) 2024; 72
Zhao (10.1016/j.eswa.2025.130422_b0260) 2020; 160
He (10.1016/j.eswa.2025.130422_b0140) 2024; 123
Bargaoui (10.1016/j.eswa.2025.130422_b0085) 2017; 111
Gao (10.1016/j.eswa.2025.130422_b0060) 2013; 51
Zhang (10.1016/j.eswa.2025.130422_b0185) 2023; 11
Luo (10.1016/j.eswa.2025.130422_b0235) 2024; 235
Zhang (10.1016/j.eswa.2025.130422_b0160) 2018; 76
Naderi (10.1016/j.eswa.2025.130422_b0070) 2014; 239
A, k.k. (10.1016/j.eswa.2025.130422_b0175) 2021
Shao (10.1016/j.eswa.2025.130422_b0150) 2017
Muter (10.1016/j.eswa.2025.130422_b0040) 2020; 285
Song (10.1016/j.eswa.2025.130422_b0020) 2025; 173
Luo (10.1016/j.eswa.2025.130422_b0215) 2025
Taillard (10.1016/j.eswa.2025.130422_b0240) 1993; 64
Fernandez-Viagas (10.1016/j.eswa.2025.130422_b0080) 2015; 53
Naderi (10.1016/j.eswa.2025.130422_b0050) 2010; 37
Zhao (10.1016/j.eswa.2025.130422_b0115) 2023; 53
Karabulut (10.1016/j.eswa.2025.130422_b0110) 2022; 142
Miyata (10.1016/j.eswa.2025.130422_b0180) 2022
Yanıkoğlu (10.1016/j.eswa.2025.130422_b0035) 2022; 301
Han (10.1016/j.eswa.2025.130422_b0225) 2025; 63
Pan (10.1016/j.eswa.2025.130422_b0135) 2020; 52
Behnamian (10.1016/j.eswa.2025.130422_b0005) 2016; 27
Wang (10.1016/j.eswa.2025.130422_b0220) 2010; 37
Zhang (10.1016/j.eswa.2025.130422_b0145) 2024; 87
References_xml – volume: 37
  start-page: 754
  year: 2010
  end-page: 768
  ident: b0050
  article-title: The distributed permutation flowshop scheduling problem
  publication-title: Computers & operations research
– year: 2021
  ident: b0175
  article-title: An Evolution Strategy Approach for the Distributed Blocking Flowshop Scheduling
  publication-title: Problem.
– volume: 301
  start-page: 875
  year: 2022
  end-page: 895
  ident: b0035
  article-title: Branch-and-price approach for robust parallel machine scheduling with sequence-dependent setup times
  publication-title: European Journal of Operational Research
– volume: 58
  start-page: 425
  year: 2021
  end-page: 447
  ident: b0105
  article-title: Distributed permutation flowshop scheduling problem with total completion time objective
  publication-title: Opsearch
– volume: 142
  year: 2022
  ident: b0110
  article-title: An evolution strategy approach for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Computers & Operations Research
– volume: 148
  year: 2022
  ident: b0045
  article-title: A branch-and-cut approach for the distributed no-wait flowshop scheduling problem
  publication-title: Computers & Operations Research
– volume: 4
  start-page: 497
  year: 2011
  end-page: 508
  ident: b0055
  article-title: A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem
  publication-title: International Journal of Computational Intelligence Systems
– volume: 145
  start-page: 387
  year: 2013
  end-page: 396
  ident: b0065
  article-title: An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem
  publication-title: International Journal of Production Economics
– year: 2017
  ident: b0150
  article-title: A novel discrete water wave optimization algorithm for blocking flow-shop scheduling problem with sequence-dependent setup times
  publication-title: Swarm & Evolutionary Computation
– volume: 26
  start-page: 625
  year: 2021
  end-page: 645
  ident: b0010
  article-title: Distributed scheduling problems in intelligent manufacturing systems
  publication-title: Tsinghua Science and Technology
– volume: 83
  start-page: 213
  year: 2019
  end-page: 222
  ident: b0090
  article-title: Iterated Greedy methods for the distributed permutation flowshop scheduling problem
  publication-title: Omega
– volume: 124
  start-page: 309
  year: 2019
  end-page: 324
  ident: b0100
  article-title: Effective heuristics and metaheuristics to minimize total flowtime for the distributed permutation flowshop problem
  publication-title: Expert systems with applications
– volume: 17
  start-page: 33
  year: 2025
  ident: b0210
  article-title: An estimation of distribution algorithm-based hyper-heuristic for the blocking flowshop group scheduling problem
  publication-title: Memetic Computing
– volume: 123
  year: 2024
  ident: b0140
  article-title: Historical information based iterated greedy algorithm for distributed flowshop group scheduling problem with sequence-dependent setup times
  publication-title: Omega
– year: 2024
  ident: b0125
  article-title: A novel evolutionary algorithm for scheduling distributed no-wait flow shop problems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– year: 2021
  ident: b0195
  article-title: An adaptive iterated greedy algorithm for distributed mixed no-idle permutation flowshop scheduling problems
  publication-title: Swarm and Evolutionary Computation
– volume: 54
  start-page: 3207
  year: 2024
  end-page: 3219
  ident: b0230
  article-title: An iterative greedy algorithm with Q-learning mechanism for the multiobjective distributed no-idle permutation flowshop scheduling
  publication-title: IEEE Transactions onSystems, Man, and Cybernetics: Systems
– volume: 239
  start-page: 323
  year: 2014
  end-page: 334
  ident: b0070
  article-title: A scatter search algorithm for the distributed permutation flowshop scheduling problem
  publication-title: European Journal of Operational Research
– volume: 52
  start-page: 5999
  year: 2020
  end-page: 6012
  ident: b0135
  article-title: An effective cooperative co-evolutionary algorithm for distributed flowshop group scheduling problems
  publication-title: IEEE Transactions on Cybernetics
– volume: 53
  start-page: 1492
  year: 2022
  end-page: 1503
  ident: b0200
  article-title: A matrix-cube-based estimation of distribution algorithm for no-wait flow-shop scheduling with sequence-dependent setup times and release times
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 230
  year: 2023
  ident: b0015
  article-title: A knowledge-driven cooperative scatter search algorithm with reinforcement learning for the distributed blocking flow shop scheduling problem
  publication-title: Expert Systems with Applications
– volume: 7
  start-page: 111
  year: 2022
  end-page: 127
  ident: b0265
  article-title: LS-HH: A learning-based selection hyper-heuristic for distributed heterogeneous hybrid blocking flow-shop scheduling
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
– volume: 285
  start-page: 470
  year: 2020
  end-page: 483
  ident: b0040
  article-title: Exact algorithms to minimize makespan on single and parallel batch processing machines
  publication-title: European journal of operational research
– volume: 173
  year: 2025
  ident: b0020
  article-title: An effective two-stage heuristic for scheduling the distributed assembly flowshops with sequence dependent setup times
  publication-title: Computers & Operations Research
– volume: 53
  start-page: 4899
  year: 2023
  end-page: 4911
  ident: b0115
  article-title: A cooperative scatter search with reinforcement learning mechanism for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 87
  year: 2024
  ident: b0145
  article-title: An enhanced estimation of distribution algorithm with problem-specific knowledge for distributed no-wait flowshop group scheduling problems
  publication-title: Swarm and Evolutionary Computation
– volume: 46
  start-page: 1269
  year: 2014
  end-page: 1283
  ident: b0075
  article-title: An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem
  publication-title: Engineering Optimization
– volume: 72
  start-page: 519
  year: 2024
  end-page: 535
  ident: b0025
  article-title: Modeling and scheduling a constrained flowshop in distributed manufacturing environments
  publication-title: Journal of Manufacturing Systems
– volume: 235
  year: 2024
  ident: b0235
  article-title: Knowledge-driven two-stage memetic algorithm for energy-efficient flexible job shop scheduling with machine breakdowns
  publication-title: Expert Systems with Applications
– volume: 160
  year: 2020
  ident: b0260
  article-title: An Ensemble Discrete Differential Evolution for the Distributed Blocking Flowshop Scheduling with Minimizing Makespan Criterion
  publication-title: Expert Systems with Applications
– year: 2025
  ident: b0215
  article-title: Affinity propagation hierarchical memetic algorithm for multimodal multi-objective flexible job shop scheduling with variable speed
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2016
  ident: b0155
  article-title: Efficient constructive procedures for the distributed blocking flow shop scheduling problem
  publication-title: International Institute for Innovation, Industrial Engineering and Entrepreneurship -
– volume: 135
  year: 2023
  ident: b0120
  article-title: Acceleration-based artificial bee colony optimizer for a distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Applied Soft Computing
– volume: 317
  year: 2025
  ident: b0190
  article-title: Q-Learning-Driven Accelerated Iterated Greedy Algorithm for Multi-Scenario Group Scheduling in Distributed Blocking Flowshops
  publication-title: Knowledge-Based Systems
– year: 2017
  ident: b0250
  article-title: Efficient heuristics for the parallel blocking flow shop scheduling problem
  publication-title: Expert Systems with Applications
– reference: A, Z.S., W.S. B, and D.P.C. D, Effective heuristics and metaheuristics for the distributed fuzzy blocking flow-shop scheduling problem. Swarm and Evolutionary Computation.
– year: 2020
  ident: b0205
  article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem
  publication-title: Knowledge-Based Systems
– volume: 64
  start-page: 278
  year: 1993
  end-page: 285
  ident: b0240
  article-title: Benchmarks for Basic Scheduling Problems
  publication-title: European Journal of Operational Research
– volume: 76
  start-page: 96
  year: 2018
  end-page: 107
  ident: b0160
  article-title: Discrete differential evolution algorithm for distributed blocking flowshop scheduling with makespan criterion
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 11
  year: 2023
  ident: b0185
  article-title: A Distributed Blocking Flowshop Scheduling with Setup Times Using Multi-Factory Collaboration Iterated Greedy Algorithm
  publication-title: mathematics
– volume: 37
  start-page: 509
  year: 2010
  end-page: 520
  ident: b0220
  article-title: A novel hybrid discrete differential evolution algorithm for blocking flow shop scheduling problems
  publication-title: Computers & Operations Research
– volume: 51
  start-page: 641
  year: 2013
  end-page: 651
  ident: b0060
  article-title: An efficient tabu search algorithm for the distributed permutation flowshop scheduling problem
  publication-title: International Journal of Production Research
– volume: 26
  start-page: 36
  year: 1978
  end-page: 52
  ident: b0030
  article-title: Flowshop and jobshop schedules: Complexity and approximation
  publication-title: Operations research
– reference: .
– volume: 169
  year: 2021
  ident: b0245
  article-title: An effective multi-start iterated greedy algorithm to minimize makespan for the distributed permutation flowshop scheduling problem with preventive maintenance
  publication-title: Expert Systems with Applications
– volume: 53
  start-page: 1111
  year: 2015
  end-page: 1123
  ident: b0080
  article-title: A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem
  publication-title: International Journal of Production Research
– volume: 27
  start-page: 231
  year: 2016
  end-page: 249
  ident: b0005
  article-title: A survey of multi-factory scheduling
  publication-title: Journal of Intelligent Manufacturing
– volume: 147
  year: 2020
  ident: b0130
  article-title: An improved artificial bee colony algorithm for distributed heterogeneous hybrid flowshop scheduling problem with sequence-dependent setup times
  publication-title: Computers & Industrial Engineering
– volume: 111
  start-page: 239
  year: 2017
  end-page: 250
  ident: b0085
  article-title: A novel chemical reaction optimization for the distributed permutation flowshop scheduling problem with makespan criterion
  publication-title: Computers & Industrial Engineering
– volume: 63
  start-page: 1753
  year: 2025
  end-page: 1778
  ident: b0225
  article-title: Optimising distributed heterogeneous flowshop group scheduling arising from PCB mounting: Integrating construction and improvement heuristics
  publication-title: International Journal of Production Research
– volume: 118
  start-page: 464
  year: 2018
  end-page: 477
  ident: b0095
  article-title: The distributed permutation flow shop to minimise the total flowtime
  publication-title: Computers & Industrial Engineering
– volume: 71
  year: 2021
  ident: b0170
  article-title: Production scheduling for blocking flowshop in distributed environment using effective heuristics and iterated greedy algorithm
  publication-title: Robotics and Computer-Integrated Manufacturing
– year: 2022
  ident: b0180
  article-title: An iterated greedy algorithm for distributed blocking flow shop with setup times and maintenance operations to minimize makespan
  publication-title: Computers & Industrial Engineering
– volume: 145
  year: 2019
  ident: b0165
  article-title: Hybrid enhanced discrete fruit fly optimization algorithm for scheduling blocking flow-shop in distributed environment
  publication-title: Expert Systems with Applications
– volume: 26
  start-page: 625
  issue: 5
  year: 2021
  ident: 10.1016/j.eswa.2025.130422_b0010
  article-title: Distributed scheduling problems in intelligent manufacturing systems
  publication-title: Tsinghua Science and Technology
  doi: 10.26599/TST.2021.9010009
– year: 2021
  ident: 10.1016/j.eswa.2025.130422_b0195
  article-title: An adaptive iterated greedy algorithm for distributed mixed no-idle permutation flowshop scheduling problems
  publication-title: Swarm and Evolutionary Computation
– volume: 147
  year: 2020
  ident: 10.1016/j.eswa.2025.130422_b0130
  article-title: An improved artificial bee colony algorithm for distributed heterogeneous hybrid flowshop scheduling problem with sequence-dependent setup times
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106638
– volume: 169
  year: 2021
  ident: 10.1016/j.eswa.2025.130422_b0245
  article-title: An effective multi-start iterated greedy algorithm to minimize makespan for the distributed permutation flowshop scheduling problem with preventive maintenance
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114495
– year: 2021
  ident: 10.1016/j.eswa.2025.130422_b0175
  article-title: An Evolution Strategy Approach for the Distributed Blocking Flowshop Scheduling
  publication-title: Problem.
– volume: 145
  start-page: 387
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2025.130422_b0065
  article-title: An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2013.05.004
– volume: 124
  start-page: 309
  year: 2019
  ident: 10.1016/j.eswa.2025.130422_b0100
  article-title: Effective heuristics and metaheuristics to minimize total flowtime for the distributed permutation flowshop problem
  publication-title: Expert systems with applications
  doi: 10.1016/j.eswa.2019.01.062
– volume: 11
  issue: 3
  year: 2023
  ident: 10.1016/j.eswa.2025.130422_b0185
  article-title: A Distributed Blocking Flowshop Scheduling with Setup Times Using Multi-Factory Collaboration Iterated Greedy Algorithm
  publication-title: mathematics
  doi: 10.3390/math11030581
– volume: 317
  year: 2025
  ident: 10.1016/j.eswa.2025.130422_b0190
  article-title: Q-Learning-Driven Accelerated Iterated Greedy Algorithm for Multi-Scenario Group Scheduling in Distributed Blocking Flowshops
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2025.113424
– volume: 230
  year: 2023
  ident: 10.1016/j.eswa.2025.130422_b0015
  article-title: A knowledge-driven cooperative scatter search algorithm with reinforcement learning for the distributed blocking flow shop scheduling problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.120571
– volume: 64
  start-page: 278
  issue: 2
  year: 1993
  ident: 10.1016/j.eswa.2025.130422_b0240
  article-title: Benchmarks for Basic Scheduling Problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(93)90182-M
– volume: 285
  start-page: 470
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2025.130422_b0040
  article-title: Exact algorithms to minimize makespan on single and parallel batch processing machines
  publication-title: European journal of operational research
  doi: 10.1016/j.ejor.2020.01.065
– volume: 239
  start-page: 323
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2025.130422_b0070
  article-title: A scatter search algorithm for the distributed permutation flowshop scheduling problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.05.024
– volume: 52
  start-page: 5999
  issue: 7
  year: 2020
  ident: 10.1016/j.eswa.2025.130422_b0135
  article-title: An effective cooperative co-evolutionary algorithm for distributed flowshop group scheduling problems
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2020.3041494
– volume: 118
  start-page: 464
  year: 2018
  ident: 10.1016/j.eswa.2025.130422_b0095
  article-title: The distributed permutation flow shop to minimise the total flowtime
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.03.014
– year: 2025
  ident: 10.1016/j.eswa.2025.130422_b0215
  article-title: Affinity propagation hierarchical memetic algorithm for multimodal multi-objective flexible job shop scheduling with variable speed
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 54
  start-page: 3207
  issue: 5
  year: 2024
  ident: 10.1016/j.eswa.2025.130422_b0230
  article-title: An iterative greedy algorithm with Q-learning mechanism for the multiobjective distributed no-idle permutation flowshop scheduling
  publication-title: IEEE Transactions onSystems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2024.3358383
– volume: 87
  year: 2024
  ident: 10.1016/j.eswa.2025.130422_b0145
  article-title: An enhanced estimation of distribution algorithm with problem-specific knowledge for distributed no-wait flowshop group scheduling problems
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2024.101559
– volume: 123
  year: 2024
  ident: 10.1016/j.eswa.2025.130422_b0140
  article-title: Historical information based iterated greedy algorithm for distributed flowshop group scheduling problem with sequence-dependent setup times
  publication-title: Omega
  doi: 10.1016/j.omega.2023.102997
– volume: 63
  start-page: 1753
  issue: 5
  year: 2025
  ident: 10.1016/j.eswa.2025.130422_b0225
  article-title: Optimising distributed heterogeneous flowshop group scheduling arising from PCB mounting: Integrating construction and improvement heuristics
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2024.2390979
– year: 2017
  ident: 10.1016/j.eswa.2025.130422_b0250
  article-title: Efficient heuristics for the parallel blocking flow shop scheduling problem
  publication-title: Expert Systems with Applications
– volume: 135
  year: 2023
  ident: 10.1016/j.eswa.2025.130422_b0120
  article-title: Acceleration-based artificial bee colony optimizer for a distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2023.110029
– volume: 111
  start-page: 239
  year: 2017
  ident: 10.1016/j.eswa.2025.130422_b0085
  article-title: A novel chemical reaction optimization for the distributed permutation flowshop scheduling problem with makespan criterion
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2017.07.020
– volume: 58
  start-page: 425
  year: 2021
  ident: 10.1016/j.eswa.2025.130422_b0105
  article-title: Distributed permutation flowshop scheduling problem with total completion time objective
  publication-title: Opsearch
  doi: 10.1007/s12597-020-00484-3
– volume: 71
  issue: mar.
  year: 2021
  ident: 10.1016/j.eswa.2025.130422_b0170
  article-title: Production scheduling for blocking flowshop in distributed environment using effective heuristics and iterated greedy algorithm
  publication-title: Robotics and Computer-Integrated Manufacturing
– volume: 142
  year: 2022
  ident: 10.1016/j.eswa.2025.130422_b0110
  article-title: An evolution strategy approach for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2022.105733
– volume: 51
  start-page: 641
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2025.130422_b0060
  article-title: An efficient tabu search algorithm for the distributed permutation flowshop scheduling problem
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2011.644819
– volume: 7
  start-page: 111
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2025.130422_b0265
  article-title: LS-HH: A learning-based selection hyper-heuristic for distributed heterogeneous hybrid blocking flow-shop scheduling
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
  doi: 10.1109/TETCI.2022.3174915
– volume: 37
  start-page: 754
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2025.130422_b0050
  article-title: The distributed permutation flowshop scheduling problem
  publication-title: Computers & operations research
  doi: 10.1016/j.cor.2009.06.019
– volume: 148
  year: 2022
  ident: 10.1016/j.eswa.2025.130422_b0045
  article-title: A branch-and-cut approach for the distributed no-wait flowshop scheduling problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2022.106009
– volume: 17
  start-page: 33
  issue: 3
  year: 2025
  ident: 10.1016/j.eswa.2025.130422_b0210
  article-title: An estimation of distribution algorithm-based hyper-heuristic for the blocking flowshop group scheduling problem
  publication-title: Memetic Computing
  doi: 10.1007/s12293-025-00454-6
– year: 2022
  ident: 10.1016/j.eswa.2025.130422_b0180
  article-title: An iterated greedy algorithm for distributed blocking flow shop with setup times and maintenance operations to minimize makespan
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2022.108366
– volume: 72
  start-page: 519
  year: 2024
  ident: 10.1016/j.eswa.2025.130422_b0025
  article-title: Modeling and scheduling a constrained flowshop in distributed manufacturing environments
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2023.12.006
– volume: 301
  start-page: 875
  issue: 3
  year: 2022
  ident: 10.1016/j.eswa.2025.130422_b0035
  article-title: Branch-and-price approach for robust parallel machine scheduling with sequence-dependent setup times
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2021.11.023
– volume: 27
  start-page: 231
  year: 2016
  ident: 10.1016/j.eswa.2025.130422_b0005
  article-title: A survey of multi-factory scheduling
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-014-0890-y
– volume: 160
  year: 2020
  ident: 10.1016/j.eswa.2025.130422_b0260
  article-title: An Ensemble Discrete Differential Evolution for the Distributed Blocking Flowshop Scheduling with Minimizing Makespan Criterion
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113678
– ident: 10.1016/j.eswa.2025.130422_b0255
– year: 2016
  ident: 10.1016/j.eswa.2025.130422_b0155
  article-title: Efficient constructive procedures for the distributed blocking flow shop scheduling problem
– volume: 173
  year: 2025
  ident: 10.1016/j.eswa.2025.130422_b0020
  article-title: An effective two-stage heuristic for scheduling the distributed assembly flowshops with sequence dependent setup times
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2024.106850
– volume: 53
  start-page: 1492
  issue: 3
  year: 2022
  ident: 10.1016/j.eswa.2025.130422_b0200
  article-title: A matrix-cube-based estimation of distribution algorithm for no-wait flow-shop scheduling with sequence-dependent setup times and release times
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2022.3198829
– volume: 145
  year: 2019
  ident: 10.1016/j.eswa.2025.130422_b0165
  article-title: Hybrid enhanced discrete fruit fly optimization algorithm for scheduling blocking flow-shop in distributed environment
  publication-title: Expert Systems with Applications
– volume: 83
  start-page: 213
  year: 2019
  ident: 10.1016/j.eswa.2025.130422_b0090
  article-title: Iterated Greedy methods for the distributed permutation flowshop scheduling problem
  publication-title: Omega
  doi: 10.1016/j.omega.2018.03.004
– volume: 37
  start-page: 509
  issue: 3
  year: 2010
  ident: 10.1016/j.eswa.2025.130422_b0220
  article-title: A novel hybrid discrete differential evolution algorithm for blocking flow shop scheduling problems
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2008.12.004
– volume: 235
  year: 2024
  ident: 10.1016/j.eswa.2025.130422_b0235
  article-title: Knowledge-driven two-stage memetic algorithm for energy-efficient flexible job shop scheduling with machine breakdowns
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121149
– volume: 46
  start-page: 1269
  issue: 9
  year: 2014
  ident: 10.1016/j.eswa.2025.130422_b0075
  article-title: An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2013.827673
– volume: 76
  start-page: 96
  issue: NOV.
  year: 2018
  ident: 10.1016/j.eswa.2025.130422_b0160
  article-title: Discrete differential evolution algorithm for distributed blocking flowshop scheduling with makespan criterion
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2018.09.005
– volume: 4
  start-page: 497
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2025.130422_b0055
  article-title: A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem
  publication-title: International Journal of Computational Intelligence Systems
– volume: 53
  start-page: 4899
  issue: 8
  year: 2023
  ident: 10.1016/j.eswa.2025.130422_b0115
  article-title: A cooperative scatter search with reinforcement learning mechanism for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2023.3256484
– volume: 26
  start-page: 36
  issue: 1
  year: 1978
  ident: 10.1016/j.eswa.2025.130422_b0030
  article-title: Flowshop and jobshop schedules: Complexity and approximation
  publication-title: Operations research
  doi: 10.1287/opre.26.1.36
– year: 2024
  ident: 10.1016/j.eswa.2025.130422_b0125
  article-title: A novel evolutionary algorithm for scheduling distributed no-wait flow shop problems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2024.3370376
– volume: 53
  start-page: 1111
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2025.130422_b0080
  article-title: A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2014.948578
– year: 2017
  ident: 10.1016/j.eswa.2025.130422_b0150
  article-title: A novel discrete water wave optimization algorithm for blocking flow-shop scheduling problem with sequence-dependent setup times
  publication-title: Swarm & Evolutionary Computation
– year: 2020
  ident: 10.1016/j.eswa.2025.130422_b0205
  article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.105527
SSID ssj0017007
Score 2.4851716
Snippet This paper deals with the distributed blocking flowshop scheduling problem (DBFSP), a critical challenge in modern manufacturing systems involving multiple...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 130422
SubjectTerms Distributed blocking flowshop
Iterated greedy algorithm
Local search
Makespan
Scheduling
Title A two-stage iterated greedy algorithm for distributed blocking flowshop scheduling problem
URI https://dx.doi.org/10.1016/j.eswa.2025.130422
Volume 300
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swELYY7GEvDDYQv-WHvUVBbhzXzmOZQIAQAo1J1V6iOHagBZKqDSt__s6x3RSYEEzaSxRFilvdfTqfL999h9C3QhVSaslDJjkP40SyMMtVJ5REZpQXOiOsaRQ-4-fnot9PLtzM1kkzToCXpXh8TEb_1dXwDJxtWmff4e7ZovAA7sHpcAW3w_VNju8F9bQKIem71oHVTIacEk7VEE6D7O66Gg_qm_uGXaiMaK6Zd2WyUNjUbhtW5V01ndxUowCOvbANuW71ZurMkyq-kUiunRC0b5Gb-xj-siDd9pxdDmzV9WBQtqiyNG-3jxqGkKUZPJTzdYmo2xCzWFss8w0zLTvJVh0BER07mMcHYNpolb4M5rauMNzXk6lRiIqYGV0d2zbmZyLZP8zCZl2jyEYoJx_QUsRZAnFuqXdy2D-dfVnixLbQ-z_iGqks5-_5L_09WZlLQK5W0LI7OeCe9fgqWtDlF_TZT-XALkh_Rb96eAYA7AGALQDwDAAYAIDnAIA9ALAHAG4BgB0A1tDPo8Or78ehm6AR5pC3Qfqhcq64VkksjIx2pCmVXV10ijwSWoouU92MakGKXHKqooSLPCYZGEAoRbOY03W0WFal3kDYsDWkILSIsyJmzHDomBKEsSgnsCzbRIE3VTqyQimpZxAOU2PY1Bg2tYbdRMxbM3Wpnk3hUnD-K-9t_eN72-hTi9EdtFiPH_Qu-pj_rgeT8Z7DyB_VVn1j
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-stage+iterated+greedy+algorithm+for+distributed+blocking+flowshop+scheduling+problem&rft.jtitle=Expert+systems+with+applications&rft.au=Zhang%2C+Sen&rft.au=Qian%2C+Bin&rft.au=Hu%2C+Rong&rft.au=Li%2C+Kun&rft.date=2026-03-05&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=300&rft_id=info:doi/10.1016%2Fj.eswa.2025.130422&rft.externalDocID=S0957417425040370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon