Hybrid algorithm for fault node recovery and energy efficiency in wireless sensor networks

The Wireless Sensor Networks (WSNs) are designed for the monitoring of remote areas in various places with a variety of different applications. The main challenges with the WSN are energy efficiency and fault recovery. In order to optimize the network lifetime of the WSN, fault node recovery and ene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of information & optimization sciences Jg. 45; H. 8; S. 2347 - 2367
Hauptverfasser: Takale, Dattatray G., Mahalle, Parikshit N., Kulkarni, Omkaresh, Sule, Bipin, Banchhor, Chitrakant, Ghuge, Kalyani, Patil, Rahul
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 2024
ISSN:0252-2667, 2169-0103
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The Wireless Sensor Networks (WSNs) are designed for the monitoring of remote areas in various places with a variety of different applications. The main challenges with the WSN are energy efficiency and fault recovery. In order to optimize the network lifetime of the WSN, fault node recovery and energy efficient clustering are required in order to efficiently utilize the energy supply device of battery-powered sensors. The purpose of this paper is to develop a hybrid algorithm that combines the K-means clustering technique with fault node recovery in the WSN in order to reduce energy consumption and extend sensor lifetimes. A hybrid algorithm combine’s fault node recovery with energy-efficient clustering methods in order to reduce energy usage. We are using Grade Diffusion (GD) with Genetic Algorithm (GA) to detect fault nodes. In complex or large WSNs, K-means clustering can be used to reduce the complexity of the hybrid algorithm in order to reduce its complexity. As the hybrid algorithm is used for identifying fault nodes and replacing nodes with neighbor nodes, it is primarily used for the computation of grade values. With the proposed fault node recovery and energy efficient clustering methods, the energy consumption of each node can be minimized and the network lifetime can be improved as well. Using the MATLAB platform, we compared the suggested method to several existing ones including “Low Energy Adaptive Clustering Hierarchy (LEACH), Hybrid Hierarchical Clustering Approach (HHCA), Novel Energy Aware Hierarchical Cluster (NEAHC), and Heuristic Algorithm for Clustering Hierarchical Protocol (HACH)”, among others in terms of residual and consumption energy, as well as receiving packet data.
AbstractList The Wireless Sensor Networks (WSNs) are designed for the monitoring of remote areas in various places with a variety of different applications. The main challenges with the WSN are energy efficiency and fault recovery. In order to optimize the network lifetime of the WSN, fault node recovery and energy efficient clustering are required in order to efficiently utilize the energy supply device of battery-powered sensors. The purpose of this paper is to develop a hybrid algorithm that combines the K-means clustering technique with fault node recovery in the WSN in order to reduce energy consumption and extend sensor lifetimes. A hybrid algorithm combine’s fault node recovery with energy-efficient clustering methods in order to reduce energy usage. We are using Grade Diffusion (GD) with Genetic Algorithm (GA) to detect fault nodes. In complex or large WSNs, K-means clustering can be used to reduce the complexity of the hybrid algorithm in order to reduce its complexity. As the hybrid algorithm is used for identifying fault nodes and replacing nodes with neighbor nodes, it is primarily used for the computation of grade values. With the proposed fault node recovery and energy efficient clustering methods, the energy consumption of each node can be minimized and the network lifetime can be improved as well. Using the MATLAB platform, we compared the suggested method to several existing ones including “Low Energy Adaptive Clustering Hierarchy (LEACH), Hybrid Hierarchical Clustering Approach (HHCA), Novel Energy Aware Hierarchical Cluster (NEAHC), and Heuristic Algorithm for Clustering Hierarchical Protocol (HACH)”, among others in terms of residual and consumption energy, as well as receiving packet data.
Author Kulkarni, Omkaresh
Sule, Bipin
Banchhor, Chitrakant
Patil, Rahul
Takale, Dattatray G.
Ghuge, Kalyani
Mahalle, Parikshit N.
Author_xml – sequence: 1
  givenname: Dattatray G.
  surname: Takale
  fullname: Takale, Dattatray G.
– sequence: 2
  givenname: Parikshit N.
  surname: Mahalle
  fullname: Mahalle, Parikshit N.
– sequence: 3
  givenname: Omkaresh
  surname: Kulkarni
  fullname: Kulkarni, Omkaresh
– sequence: 4
  givenname: Bipin
  surname: Sule
  fullname: Sule, Bipin
– sequence: 5
  givenname: Chitrakant
  surname: Banchhor
  fullname: Banchhor, Chitrakant
– sequence: 6
  givenname: Kalyani
  surname: Ghuge
  fullname: Ghuge, Kalyani
– sequence: 7
  givenname: Rahul
  surname: Patil
  fullname: Patil, Rahul
BookMark eNot0L1OwzAYhWELFYm2sHAFnpEC_osdj6gCWlSpA7CwRI79uRhSG9mBKndfCkxnes_wzNAkpggIXVJyLZRW4uZxtXmqaMPpCZoyKnVFKOETNCWsZhWTUp2hWSnvhAgtiZqi1-XY5eCw6bcph-Fth33K2JuvfsAxOcAZbPqGPGITHYYIeTti8D7YANGOOES8Dxl6KAUXiOUnjjDsU_4o5-jUm77Axf_O0cv93fNiWa03D6vF7bqylJGh6jxTVMgaBIjaCSG49R5q2XlpXNc0xjgDSmvLa7CsaYRxkkvQ3oDtrOB8jq7-fm1OpWTw7WcOO5PHlpL2V6U9qrRHFX4AjrpZtA
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.47974/JIOS-1831
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2169-0103
EndPage 2367
ExternalDocumentID 10_47974_JIOS_1831
GroupedDBID -~X
.DC
29K
30N
4.4
5GY
AAIKQ
AAKBW
AAYXX
ABCCY
ABFIM
ABJNI
ABPEM
ABTAI
ABXYU
ACAGQ
ACFPA
ACGFS
ACTIO
ADCVX
ADXHL
AEYOC
AGDLA
AGLEN
AGROQ
AIJEM
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMATQ
AMXXU
AQRUH
AVBZW
AWYRJ
BCCOT
BLEHA
BPLKW
C06
CCCUG
CITATION
CRFIH
D-I
DGEBU
DKSSO
DMQIW
DWIFK
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
IVXBP
KYCEM
LJTGL
M4Z
NUSFT
O9-
P2P
PQQKQ
PZZ
QCRFL
S-T
SJN
SNACF
TAQ
TDBHL
TFMCV
TFW
TN5
TOXWX
TTHFI
UT5
ID FETCH-LOGICAL-c120t-bf271465e4e45d4443cffe56bf6adb88aadae799c35ec2884ad636e9faecbc433
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001386390500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0252-2667
IngestDate Sat Nov 29 03:19:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c120t-bf271465e4e45d4443cffe56bf6adb88aadae799c35ec2884ad636e9faecbc433
PageCount 21
ParticipantIDs crossref_primary_10_47974_JIOS_1831
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationTitle Journal of information & optimization sciences
PublicationYear 2024
SSID ssj0049607
Score 2.242396
Snippet The Wireless Sensor Networks (WSNs) are designed for the monitoring of remote areas in various places with a variety of different applications. The main...
SourceID crossref
SourceType Index Database
StartPage 2347
Title Hybrid algorithm for fault node recovery and energy efficiency in wireless sensor networks
Volume 45
WOSCitedRecordID wos001386390500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 2169-0103
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0049607
  issn: 0252-2667
  databaseCode: TFW
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKwoELbwS7gCzBLQq0sR0nR17LIlAXaQusuFSOY7NR23TVpqvdP8bvY8Z20oiHtBy4RJXTadXOp3llvhlCnpWclUPIZeM0zUXMrQQ7yEYi1uAbEw0xdOGenn_5KMfj7Pg4_zQY_Gi5MGdzWdfZ-Xl--l9VDWegbKTO_oO6uw-FA3gNSocrqB2ul1L8wQWSsCI1_76ExP9k4RoJrdrMm6helrglRWPbpp-7ZDz1z7hBEo6FWSGvGzepgAVcQ44LwrVvFV__JZANs1c7IC3BCi0CvTMKHraL3CdqFjqY36gGAt2VuojePd_Wxd1uFx_arqrZ-qRqonF3-8NmPsNKDt4_XMyQOtVVs482Xu4VLuPu1zI8eToYu0QkMQQL3vkad5aMUuzlGrK-tfbDJwMqs77pZVz23DhOpvuTi-ASMihcf_3-8CgGezbaOsL24f8v_rHrWoR8yUlPUXaKslfI1USKHFeGTPa_thEAh6zQ0fTb3-TH4jrZF9339gKhXkQzuUVuBA3Slx5Ct8nA1HfIzXbNBw1W_y755hFFO0RR0Dd1iKKIKNoiigKiqEcU3SKKVjVtEUU9omiLqHvk8_7byeuDOKzkiPUoGTZxYRMJvlUYbrgoOedMW2tEWthUlUWWKVUqI_NcM2F0kmVclSlLTW6V0YXmjN0nO_WyNg8IFVwVEM3L0mSKa2sKaaximI8Ipfkwf0ietv_P9NRPXpn-roHdS71rj1xHuPnS2SOy06w25jG5ps-aar164pT3E0N_fro
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+algorithm+for+fault+node+recovery+and+energy+efficiency+in+wireless+sensor+networks&rft.jtitle=Journal+of+information+%26+optimization+sciences&rft.au=Takale%2C+Dattatray+G.&rft.au=Mahalle%2C+Parikshit+N.&rft.au=Kulkarni%2C+Omkaresh&rft.au=Sule%2C+Bipin&rft.date=2024&rft.issn=0252-2667&rft.eissn=2169-0103&rft.volume=45&rft.issue=8&rft.spage=2347&rft.epage=2367&rft_id=info:doi/10.47974%2FJIOS-1831&rft.externalDBID=n%2Fa&rft.externalDocID=10_47974_JIOS_1831
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0252-2667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0252-2667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0252-2667&client=summon