Deep learning model for predicting immunotherapy response in patients with advanced NSCLC Study findings demonstrate a strong and independent deep learning‐based feature associated with an immune checkpoint inhibitor response in patients with NSCLC across cohorts

This news section offers Cancer readers timely information on events, public policy analysis, topical issues, and personalities. In this issue, study findings demonstrate a strong and independent deep learning‐based feature associated with an immune checkpoint inhibitor response in patients with NSC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer Jg. 131; H. 11; S. e35883
1. Verfasser: Nierengarten, Mary Beth
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Wiley Subscription Services, Inc 01.06.2025
Schlagworte:
ISSN:0008-543X, 1097-0142, 1097-0142
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This news section offers Cancer readers timely information on events, public policy analysis, topical issues, and personalities. In this issue, study findings demonstrate a strong and independent deep learning‐based feature associated with an immune checkpoint inhibitor response in patients with NSCLC across cohorts. In addition, cabozantinib was found to significantly improve progression‐free survival in a heavily pretreated population of patients with advanced neuroendocrine tumors, and a new standard of care is discussed for patients with asymptomatic brain metastases from melanoma.
AbstractList This news section offers Cancer readers timely information on events, public policy analysis, topical issues, and personalities. In this issue, study findings demonstrate a strong and independent deep learning‐based feature associated with an immune checkpoint inhibitor response in patients with NSCLC across cohorts. In addition, cabozantinib was found to significantly improve progression‐free survival in a heavily pretreated population of patients with advanced neuroendocrine tumors, and a new standard of care is discussed for patients with asymptomatic brain metastases from melanoma.
Author Nierengarten, Mary Beth
Author_xml – sequence: 1
  givenname: Mary Beth
  surname: Nierengarten
  fullname: Nierengarten, Mary Beth
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40457864$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1LxDAQhoOsuLvViz9AAl5E6Jo0ybY9Sv2ERQ8q6Kmk6dTN0iY1aZX993bd1YOXGWZ4eBnmmaKRsQYQOqZkRgmJLpRRbsZEkrA9NKEkjUNCeTRCE0JIEgrOXsdo6v1qGONIsAM05oSLOJnzCXq7AmhxDdIZbd5xY0uocWUdbh2UWnWbpW6a3thuCU62a-zAt9Z4wNrgVnYaTOfxl-6WWJaf0igo8cNTtsgO0X4law9Hux6gl5vr5-wuXDze3meXi1BRmvIQWJQowmIJXJJCyCqu5lRAQaGYS865KGUiIQaWQMpTLgRTMS2iUqhCgKiABehsm9s6-9GD7_JGewV1LQ3Y3ucsoiJiQgwlQKf_0JXtnRmuG6goJWlChvwAneyovmigzFunG-nW-e_TBuB8CyhnvXdQ_SGU5Bsj-cZI_mOEfQOM8X2r
Cites_doi 10.1001/jamaoncol.2024.5356
ContentType Journal Article
Copyright 2025 American Cancer Society.
Copyright_xml – notice: 2025 American Cancer Society.
DBID AAYXX
CITATION
NPM
7TO
7U7
C1K
H94
K9.
NAPCQ
7X8
DOI 10.1002/cncr.35883
DatabaseName CrossRef
PubMed
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-0142
ExternalDocumentID 40457864
10_1002_cncr_35883
Genre News
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OC
29B
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANLZ
AAONW
AAQOH
AAWTL
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABHFT
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGNAY
AGXDD
AGYGG
AHBTC
AI.
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CITATION
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FD6
FUBAC
G-S
G.N
GNP
GODZA
GX1
H.X
HBH
HF~
HGLYW
HHY
HHZ
HZ~
H~9
IH2
IX1
J0M
J5H
JPC
KBYEO
KQQ
KZ1
L7B
LATKE
LAW
LC2
LC3
LH4
LITHE
LMP
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NEJ
NF~
NNB
O66
O8X
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RSU
RX1
RYL
SJN
SUPJJ
TEORI
UDS
UHB
V2E
V8K
V9Y
VH1
W8V
W99
WBKPD
WH7
WHG
WHWMO
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XPP
XV2
Y6R
YQJ
Z0Y
ZGI
ZXP
ZZTAW
~IA
~WT
AARRQ
NPM
7TO
7U7
C1K
H94
K9.
NAPCQ
7X8
ID FETCH-LOGICAL-c1194-e328c037ae4a0b5af7f615eb1eb6a4445da8ae7e38e9494553c71b2d5cb5e5fe3
ISSN 0008-543X
1097-0142
IngestDate Thu Oct 02 22:38:47 EDT 2025
Tue Oct 07 06:55:20 EDT 2025
Mon Jul 21 06:01:37 EDT 2025
Sat Nov 29 07:13:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1194-e328c037ae4a0b5af7f615eb1eb6a4445da8ae7e38e9494553c71b2d5cb5e5fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-News-1
PMID 40457864
PQID 3229098055
PQPubID 2045183
ParticipantIDs proquest_miscellaneous_3215235552
proquest_journals_3229098055
pubmed_primary_40457864
crossref_primary_10_1002_cncr_35883
PublicationCentury 2000
PublicationDate 2025-06-00
2025-Jun-01
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Atlanta
PublicationTitle Cancer
PublicationTitleAlternate Cancer
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_2_2_1
References_xml – ident: e_1_2_2_2_1
  doi: 10.1001/jamaoncol.2024.5356
SSID ssj0007253
Score 2.4810958
Snippet This news section offers Cancer readers timely information on events, public policy analysis, topical issues, and personalities. In this issue, study findings...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage e35883
SubjectTerms Deep learning
Immunotherapy
Subtitle Study findings demonstrate a strong and independent deep learning‐based feature associated with an immune checkpoint inhibitor response in patients with NSCLC across cohorts
Title Deep learning model for predicting immunotherapy response in patients with advanced NSCLC
URI https://www.ncbi.nlm.nih.gov/pubmed/40457864
https://www.proquest.com/docview/3229098055
https://www.proquest.com/docview/3215235552
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007253
  issn: 0008-543X
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF7aFFVcEG8CpRoE4mK5JPZubHODtBWHEhBNpdys3c24WIAT3IfaX8tfYZ-2I6AqBy5WtN7EI31fZme9M98Q8lJEClQVGocUoyKkMhYhV3vbkA-QSoEjNUJNs4lkMklns-zT2tpPXwtz_i2pqvTiIlv-V6jVmAJbl87-A9zNj6oB9VmBrq4KdnW9FvC7iEvfDOLYdroxuYTLWp_JmCznUheFuNKry6C2abJGPcTJrPqaN58gMDkcH4z1y4NDo0FtDrp1u885ftfxpZabCLiuO1m4ksey6a57qiZ1DAr1sjkPCuT26MKxwyfBK29jjMNAkUl-XS7KSvcw-FIK5XnqK0w1FgbcLPqB7vpbW4mqjgqDbBORJ6WucjzW-ayVq1i6DN7Z5LbmJUjE2mQt57cHWlR2aIW6dvAPY97Zx8Muq4cd340xS21Tnd-WFStTKytZ7zSTVrW7Jx_z_aODg3y6N5u-Wv4IdVszffzverysk40oYVnaIxu7n9XEJlhIImZrQJytjYJu9Lp93GrM9JeNkAmIpnfIbbeTgbeWgXfJGlb3yOYHl6tx_8amJiJ43MEQERQRoSUirBARPLpQVuDRBY0ueCKCgfkNGBqCpyF0aAgcLA1B0RA6NIR51xxLQ3A0hJaG7nmVNQ2hpSE0NLzCUGMfWBqCo-EDcrS_Nx2_D13fkVAOhxkNMY5SOYgTjpQPBONFUqi4XwU1KEacUsrmPOWYYJxiRjPKWCyToYjmTAqGrMD4IelViwofE5AJlRgLlglW0EEqRMZlkSHnRZoVkok-eeGRzZdWXia3QuJRrvHPDf59suVBz52nOclj3akhSweM9cnz5rZaHPSJH69wcabnqPBc7ShY1CePLFmax1C1mUvSEX1yjW8_Jbfaf90W6Z3WZ_iM3JTnp-VJvU3Wk1m67Zj9C-_s9_k
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+model+for+predicting+immunotherapy+response+in+patients+with+advanced+NSCLC%3A+Study+findings+demonstrate+a+strong+and+independent+deep+learning-based+feature+associated+with+an+immune+checkpoint+inhibitor+response+in+patients+with+NSCLC+across+cohorts&rft.jtitle=Cancer&rft.au=Nierengarten%2C+Mary+Beth&rft.date=2025-06-01&rft.issn=1097-0142&rft.eissn=1097-0142&rft.volume=131&rft.issue=11&rft.spage=e35883&rft_id=info:doi/10.1002%2Fcncr.35883&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-543X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-543X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-543X&client=summon