Deep learning model for predicting immunotherapy response in patients with advanced NSCLC Study findings demonstrate a strong and independent deep learning‐based feature associated with an immune checkpoint inhibitor response in patients with NSCLC across cohorts
This news section offers Cancer readers timely information on events, public policy analysis, topical issues, and personalities. In this issue, study findings demonstrate a strong and independent deep learning‐based feature associated with an immune checkpoint inhibitor response in patients with NSC...
Gespeichert in:
| Veröffentlicht in: | Cancer Jg. 131; H. 11; S. e35883 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Wiley Subscription Services, Inc
01.06.2025
|
| Schlagworte: | |
| ISSN: | 0008-543X, 1097-0142, 1097-0142 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This news section offers Cancer readers timely information on events, public policy analysis, topical issues, and personalities. In this issue, study findings demonstrate a strong and independent deep learning‐based feature associated with an immune checkpoint inhibitor response in patients with NSCLC across cohorts. In addition, cabozantinib was found to significantly improve progression‐free survival in a heavily pretreated population of patients with advanced neuroendocrine tumors, and a new standard of care is discussed for patients with asymptomatic brain metastases from melanoma. |
|---|---|
| AbstractList | This news section offers Cancer readers timely information on events, public policy analysis, topical issues, and personalities. In this issue, study findings demonstrate a strong and independent deep learning‐based feature associated with an immune checkpoint inhibitor response in patients with NSCLC across cohorts. In addition, cabozantinib was found to significantly improve progression‐free survival in a heavily pretreated population of patients with advanced neuroendocrine tumors, and a new standard of care is discussed for patients with asymptomatic brain metastases from melanoma. |
| Author | Nierengarten, Mary Beth |
| Author_xml | – sequence: 1 givenname: Mary Beth surname: Nierengarten fullname: Nierengarten, Mary Beth |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40457864$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkU1LxDAQhoOsuLvViz9AAl5E6Jo0ybY9Sv2ERQ8q6Kmk6dTN0iY1aZX993bd1YOXGWZ4eBnmmaKRsQYQOqZkRgmJLpRRbsZEkrA9NKEkjUNCeTRCE0JIEgrOXsdo6v1qGONIsAM05oSLOJnzCXq7AmhxDdIZbd5xY0uocWUdbh2UWnWbpW6a3thuCU62a-zAt9Z4wNrgVnYaTOfxl-6WWJaf0igo8cNTtsgO0X4law9Hux6gl5vr5-wuXDze3meXi1BRmvIQWJQowmIJXJJCyCqu5lRAQaGYS865KGUiIQaWQMpTLgRTMS2iUqhCgKiABehsm9s6-9GD7_JGewV1LQ3Y3ucsoiJiQgwlQKf_0JXtnRmuG6goJWlChvwAneyovmigzFunG-nW-e_TBuB8CyhnvXdQ_SGU5Bsj-cZI_mOEfQOM8X2r |
| Cites_doi | 10.1001/jamaoncol.2024.5356 |
| ContentType | Journal Article |
| Copyright | 2025 American Cancer Society. |
| Copyright_xml | – notice: 2025 American Cancer Society. |
| DBID | AAYXX CITATION NPM 7TO 7U7 C1K H94 K9. NAPCQ 7X8 |
| DOI | 10.1002/cncr.35883 |
| DatabaseName | CrossRef PubMed Oncogenes and Growth Factors Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Oncogenes and Growth Factors Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1097-0142 |
| ExternalDocumentID | 40457864 10_1002_cncr_35883 |
| Genre | News |
| GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1CY 1L6 1OC 29B 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANLZ AAONW AAQOH AAWTL AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABHFT ABIJN ABIVO ABJNI ABLJU ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGNAY AGXDD AGYGG AHBTC AI. AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CITATION CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FD6 FUBAC G-S G.N GNP GODZA GX1 H.X HBH HF~ HGLYW HHY HHZ HZ~ H~9 IH2 IX1 J0M J5H JPC KBYEO KQQ KZ1 L7B LATKE LAW LC2 LC3 LH4 LITHE LMP LOXES LP6 LP7 LSO LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NEJ NF~ NNB O66 O8X O9- OHT OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 QRW R.K ROL RSU RX1 RYL SJN SUPJJ TEORI UDS UHB V2E V8K V9Y VH1 W8V W99 WBKPD WH7 WHG WHWMO WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR XG1 XPP XV2 Y6R YQJ Z0Y ZGI ZXP ZZTAW ~IA ~WT AARRQ NPM 7TO 7U7 C1K H94 K9. NAPCQ 7X8 |
| ID | FETCH-LOGICAL-c1194-e328c037ae4a0b5af7f615eb1eb6a4445da8ae7e38e9494553c71b2d5cb5e5fe3 |
| ISSN | 0008-543X 1097-0142 |
| IngestDate | Thu Oct 02 22:38:47 EDT 2025 Tue Oct 07 06:55:20 EDT 2025 Mon Jul 21 06:01:37 EDT 2025 Sat Nov 29 07:13:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1194-e328c037ae4a0b5af7f615eb1eb6a4445da8ae7e38e9494553c71b2d5cb5e5fe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-News-1 |
| PMID | 40457864 |
| PQID | 3229098055 |
| PQPubID | 2045183 |
| ParticipantIDs | proquest_miscellaneous_3215235552 proquest_journals_3229098055 pubmed_primary_40457864 crossref_primary_10_1002_cncr_35883 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-00 2025-Jun-01 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-00 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Atlanta |
| PublicationTitle | Cancer |
| PublicationTitleAlternate | Cancer |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | e_1_2_2_2_1 |
| References_xml | – ident: e_1_2_2_2_1 doi: 10.1001/jamaoncol.2024.5356 |
| SSID | ssj0007253 |
| Score | 2.4810958 |
| Snippet | This news section offers Cancer readers timely information on events, public policy analysis, topical issues, and personalities. In this issue, study findings... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | e35883 |
| SubjectTerms | Deep learning Immunotherapy |
| Subtitle | Study findings demonstrate a strong and independent deep learning‐based feature associated with an immune checkpoint inhibitor response in patients with NSCLC across cohorts |
| Title | Deep learning model for predicting immunotherapy response in patients with advanced NSCLC |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40457864 https://www.proquest.com/docview/3229098055 https://www.proquest.com/docview/3215235552 |
| Volume | 131 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007253 issn: 0008-543X databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF7aFFVcEG8CpRoE4mK5JPZubHODtBWHEhBNpdys3c24WIAT3IfaX8tfYZ-2I6AqBy5WtN7EI31fZme9M98Q8lJEClQVGocUoyKkMhYhV3vbkA-QSoEjNUJNs4lkMklns-zT2tpPXwtz_i2pqvTiIlv-V6jVmAJbl87-A9zNj6oB9VmBrq4KdnW9FvC7iEvfDOLYdroxuYTLWp_JmCznUheFuNKry6C2abJGPcTJrPqaN58gMDkcH4z1y4NDo0FtDrp1u885ftfxpZabCLiuO1m4ksey6a57qiZ1DAr1sjkPCuT26MKxwyfBK29jjMNAkUl-XS7KSvcw-FIK5XnqK0w1FgbcLPqB7vpbW4mqjgqDbBORJ6WucjzW-ayVq1i6DN7Z5LbmJUjE2mQt57cHWlR2aIW6dvAPY97Zx8Muq4cd340xS21Tnd-WFStTKytZ7zSTVrW7Jx_z_aODg3y6N5u-Wv4IdVszffzverysk40oYVnaIxu7n9XEJlhIImZrQJytjYJu9Lp93GrM9JeNkAmIpnfIbbeTgbeWgXfJGlb3yOYHl6tx_8amJiJ43MEQERQRoSUirBARPLpQVuDRBY0ueCKCgfkNGBqCpyF0aAgcLA1B0RA6NIR51xxLQ3A0hJaG7nmVNQ2hpSE0NLzCUGMfWBqCo-EDcrS_Nx2_D13fkVAOhxkNMY5SOYgTjpQPBONFUqi4XwU1KEacUsrmPOWYYJxiRjPKWCyToYjmTAqGrMD4IelViwofE5AJlRgLlglW0EEqRMZlkSHnRZoVkok-eeGRzZdWXia3QuJRrvHPDf59suVBz52nOclj3akhSweM9cnz5rZaHPSJH69wcabnqPBc7ShY1CePLFmax1C1mUvSEX1yjW8_Jbfaf90W6Z3WZ_iM3JTnp-VJvU3Wk1m67Zj9C-_s9_k |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+model+for+predicting+immunotherapy+response+in+patients+with+advanced+NSCLC%3A+Study+findings+demonstrate+a+strong+and+independent+deep+learning-based+feature+associated+with+an+immune+checkpoint+inhibitor+response+in+patients+with+NSCLC+across+cohorts&rft.jtitle=Cancer&rft.au=Nierengarten%2C+Mary+Beth&rft.date=2025-06-01&rft.issn=1097-0142&rft.eissn=1097-0142&rft.volume=131&rft.issue=11&rft.spage=e35883&rft_id=info:doi/10.1002%2Fcncr.35883&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-543X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-543X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-543X&client=summon |