Isochron foliations and global bifurcations: a case study

The basins of attraction of periodic orbits or focus equilibria of a given vector field are foliated by forward-time isochrons, defined as all initial conditions that synchronize under the flow with a given phase. Similarly, backward-time isochrons of repelling periodic orbits or focus equilibria fo...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of mathematics and its applications : a journal of the IMA Vol. 6; no. 2; p. 1
Main Authors: Hannam, James, Krauskopf, Bernd, Osinga, Hinke M
Format: Journal Article
Language:English
Published: Oxford University Press 01.06.2022
Subjects:
ISSN:2398-4945, 2398-4945
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The basins of attraction of periodic orbits or focus equilibria of a given vector field are foliated by forward-time isochrons, defined as all initial conditions that synchronize under the flow with a given phase. Similarly, backward-time isochrons of repelling periodic orbits or focus equilibria foliate their respective basins of repulsion. We present a case study of a planar system that features a sequence of bifurcations, including a saddle-node bifurcation of periodic orbits, a homoclinic bifurcation and Hopf bifurcations, that change the nature and existence of periodic orbits. We explain how the basins and isochron foliations change throughout the sequence of bifurcations. In particular, we identify structurally stable tangencies between the foliations by forward-time and backward-time isochrons, which are curves in the plane, in regions of phase space where they exist simultaneously. Such tangencies are generically quadratic and associated with sharp turns of isochrons and phase sensitivity of the system. In contrast to the earlier reported cubic isochron foliation tangency (CIFT) mechanism, which generates a pair of tangency orbits, we find isochron foliation tangencies that occur along single specific orbits in the respective basin of attraction or repulsion. Moreover, the foliation tangencies we report arise from actual bifurcations of the system, while a CIFT is not associated with a topological change of the underlying phase portrait. The properties and interactions of isochron foliations are determined and illustrated by computing a representative number of forward-time and backward-time isochrons as arclength-parametrized curves with a boundary value problem set-up. Our algorithm for computing isochrons has been further refined and implemented in the Matlab package CoCo; it is made available as Matlab code in the supplementary material of this paper, together with a guide that walks the user through the computation of two specific isochron foliations.
AbstractList The basins of attraction of periodic orbits or focus equilibria of a given vector field are foliated by forward-time isochrons, defined as all initial conditions that synchronize under the flow with a given phase. Similarly, backward-time isochrons of repelling periodic orbits or focus equilibria foliate their respective basins of repulsion. We present a case study of a planar system that features a sequence of bifurcations, including a saddle-node bifurcation of periodic orbits, a homoclinic bifurcation and Hopf bifurcations, that change the nature and existence of periodic orbits. We explain how the basins and isochron foliations change throughout the sequence of bifurcations. In particular, we identify structurally stable tangencies between the fohations by forward-time and backward-time isochrons, which are curves in the plane, in regions of phase space where they exist simultaneously. Such tangencies are generically quadratic and associated with sharp turns of isochrons and phase sensitivity of the system. In contrast to the earlier reported cubic isochron foliation tangency (CIFT) mechanism, which generates a pair of tangency orbits, we find isochron foliation tangencies that occur along single specific orbits in the respective basin of attraction or repulsion. Moreover, the fohation tangencies we report arise from actual bifurcations of the system, while a CIFT is not associated with a topological change of the underlying phase portrait. The properties and interactions of isochron fohations are determined and illustrated by computing a representative number of forward-time and backward-time isochrons as arclengthparametrized curves with a boundary value problem set-up. Our algorithm for computing isochrons has been further refined and implemented in the Matlab package CoCo; it is made available as Matlab code in the supplementary material of this paper, together with a guide that walks the user through the computation of two specific isochron fohations. Keywords: forward-time and backward-time isochrons; fohation tangencies; global bifurcations; phase sensitivity; boundary value problem formulation.
The basins of attraction of periodic orbits or focus equilibria of a given vector field are foliated by forward-time isochrons, defined as all initial conditions that synchronize under the flow with a given phase. Similarly, backward-time isochrons of repelling periodic orbits or focus equilibria foliate their respective basins of repulsion. We present a case study of a planar system that features a sequence of bifurcations, including a saddle-node bifurcation of periodic orbits, a homoclinic bifurcation and Hopf bifurcations, that change the nature and existence of periodic orbits. We explain how the basins and isochron foliations change throughout the sequence of bifurcations. In particular, we identify structurally stable tangencies between the foliations by forward-time and backward-time isochrons, which are curves in the plane, in regions of phase space where they exist simultaneously. Such tangencies are generically quadratic and associated with sharp turns of isochrons and phase sensitivity of the system. In contrast to the earlier reported cubic isochron foliation tangency (CIFT) mechanism, which generates a pair of tangency orbits, we find isochron foliation tangencies that occur along single specific orbits in the respective basin of attraction or repulsion. Moreover, the foliation tangencies we report arise from actual bifurcations of the system, while a CIFT is not associated with a topological change of the underlying phase portrait. The properties and interactions of isochron foliations are determined and illustrated by computing a representative number of forward-time and backward-time isochrons as arclength-parametrized curves with a boundary value problem set-up. Our algorithm for computing isochrons has been further refined and implemented in the Matlab package CoCo; it is made available as Matlab code in the supplementary material of this paper, together with a guide that walks the user through the computation of two specific isochron foliations.
Audience Academic
Author Osinga, Hinke M
Hannam, James
Krauskopf, Bernd
Author_xml – sequence: 1
  givenname: James
  surname: Hannam
  fullname: Hannam, James
– sequence: 2
  givenname: Bernd
  surname: Krauskopf
  fullname: Krauskopf, Bernd
– sequence: 3
  givenname: Hinke M
  surname: Osinga
  fullname: Osinga, Hinke M
BookMark eNpNkE1rAjEQhkOxUGu99pw_sJqvdZPeRPohCL2052WSTGzKuinJevDfd4tCZQ4zPMz7Hp57MulTj4Q8crbgzMhlPMCQD8uhB8eYuCFTIY2ulFH15Oq-I_NSvtn4UTOldDMlZluS-8qppyF1EYaY-kKh93TfJQsdtTEcszvzJwrUQUFahqM_PZDbAF3B-WXPyOfL88fmrdq9v243613lONeiktKD0bjyaJuVcx6YRislMmukceiDFYiiAdQSzErVSgZr1chBWyeaWs7I4ty7hw7b2Ic0ZHDjeDxEN1oIceRrzXkjeC31f8DlVErG0P7kUU8-tZy1f7Las6z2Ikv-AtQZYmY
Cites_doi 10.1007/BFb0092042
10.1088/1751-8113/42/11/115101
10.1109/TCAD.2010.2049056
10.1140/epjst/e2016-60072-4
10.1137/05062408X
10.1137/110828976
10.1007/978-1-4020-6356-5_4
10.1007/s10441-010-9099-4
10.1016/0022-5193(67)90051-3
10.1137/090773519
10.1103/PhysRevE.94.052213
10.1063/1.4736859
10.1007/BF02339491
10.1063/5.0010149
10.1007/978-1-4757-3484-3
10.1137/100819229
10.1137/15M1010191
10.1063/1.4867877
10.1137/140998615
10.1137/080737666
10.1090/S0002-9947-1969-0252788-8
10.1007/978-0-387-21684-3
10.1007/978-1-4757-3978-7
10.1007/978-1-4612-1140-2
10.1016/j.physd.2013.06.004
10.1016/0378-4371(89)90006-X
10.1016/j.physd.2015.06.004
10.1137/120901210
10.1007/s10231-003-0078-0
10.1137/130931151
10.1016/0040-9383(70)90047-9
10.1007/978-3-030-51264-4_1
10.1088/0951-7715/23/6/004
10.1038/nn.3081
10.1137/090777244
10.1007/s00332-019-09561-4
10.1137/1.9781611972573
10.1137/16M1097419
10.1007/BF01273747
ContentType Journal Article
Copyright COPYRIGHT 2022 Oxford University Press
Copyright_xml – notice: COPYRIGHT 2022 Oxford University Press
DBID AAYXX
CITATION
DOI 10.1093/imatrm/tnac002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2398-4945
ExternalDocumentID A811721538
10_1093_imatrm_tnac002
GeographicLocations New Zealand
GeographicLocations_xml – name: New Zealand
GroupedDBID 0R~
AAFWJ
AAPXW
AAVAP
AAYXX
ABDBF
ABEJV
ABGNP
ABPTD
ABXVV
ACGFS
ACUHS
AENZO
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMNDL
BAYMD
BENPR
CCPQU
CITATION
ESX
GROUPED_DOAJ
IAO
ITC
KQ8
KSI
M~E
O9-
OK1
PHGZM
PHGZT
PIMPY
ROL
TOX
ID FETCH-LOGICAL-c1182-33da98e6deb76ccda08eb33e0b939cedfb2ee27ae83a964543fbb4edfa8bc2753
ISSN 2398-4945
IngestDate Tue Nov 04 18:21:12 EST 2025
Sat Nov 29 03:47:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1182-33da98e6deb76ccda08eb33e0b939cedfb2ee27ae83a964543fbb4edfa8bc2753
OpenAccessLink https://academic.oup.com/imatrm/article-pdf/6/2/tnac002/47139869/tnac002.pdf
ParticipantIDs gale_infotracacademiconefile_A811721538
crossref_primary_10_1093_imatrm_tnac002
PublicationCentury 2000
PublicationDate 20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 20220601
  day: 01
PublicationDecade 2020
PublicationTitle Transactions of mathematics and its applications : a journal of the IMA
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Ben Amor (2022112112322103600_ref2) 2010; 58
Langfield (2022112112322103600_ref23) 2014; 24
Sabatini (2022112112322103600_ref35) 2003; 182
Irwin (2022112112322103600_ref20) 1970; 9
England (2022112112322103600_ref10) 2005; 4
Huguet (2022112112322103600_ref19) 2013; 12
Borek (2022112112322103600_ref3) 2011; 10
Doedel (2022112112322103600_ref8) 1981
Krauskopf (2022112112322103600_ref21) 2007
Hirsch (2022112112322103600_ref18) 1977
Takeshita (2022112112322103600_ref40) 2010; 23
Giraldo (2022112112322103600_ref11) 2017; 16
Guckenheimer (2022112112322103600_ref14) 1975; 1
Osinga (2022112112322103600_ref31) 2010; 9
González-Velasco (2022112112322103600_ref13) 1969; 143
Dankowicz (2022112112322103600_ref6) 2013
Mauroy (2022112112322103600_ref28) 2013; 261
Winfree (2022112112322103600_ref44) 2001
Sabatini (2022112112322103600_ref36) 2012; 44
Campbell (2022112112322103600_ref4) 1989; 155
Hannam (2022112112322103600_ref17) 2016; 225
Mauroy (2022112112322103600_ref29) 2014; 13
Mauroy (2022112112322103600_ref27) 2015; 308
Wilson (2022112112322103600_ref41) 2016; 94
Dankowicz (2022112112322103600_ref5) 2009
Winfree (2022112112322103600_ref43) 1974; 1
Messias (2022112112322103600_ref30) 2009; 42
Guckenheimer (2022112112322103600_ref15) 1983
Akam (2022112112322103600_ref1) 2012; 15
Langfield (2022112112322103600_ref25) 2020
Detrixhe (2022112112322103600_ref7) 2016; 15
Langfield (2022112112322103600_ref24) 2015; 14
Pérez-Cervera (2022112112322103600_ref33) 2020; 30
Winfree (2022112112322103600_ref42) 1967; 16
Pugh (2022112112322103600_ref34) 2002
Glass (2022112112322103600_ref12) 1984; 246
Guillamon (2022112112322103600_ref16) 2009; 8
Sherwood (2022112112322103600_ref38) 2010; 9
Mauroy (2022112112322103600_ref26) 2012; 22
Kuznetsov (2022112112322103600_ref22) 2004
Şuvak (2022112112322103600_ref39) 2010; 29
Pérez-Cervera (2022112112322103600_ref32) 2019; 29
Doedel (2022112112322103600_ref9) 2007
Shaw (2022112112322103600_ref37) 2012; 11
References_xml – volume-title: Invariant manifolds
  year: 1977
  ident: 2022112112322103600_ref18
  article-title: Lecture Notes in Mathematics
  doi: 10.1007/BFb0092042
– volume: 42
  year: 2009
  ident: 2022112112322103600_ref30
  article-title: Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/42/11/115101
– year: 2009
  ident: 2022112112322103600_ref5
  article-title: Continuation Core and Toolboxes (COCO): Toolboxes for Parameter Continuation and Bifurcation Analysis
– volume: 29
  start-page: 1215
  year: 2010
  ident: 2022112112322103600_ref39
  article-title: Quadratic approximations for the isochrons of oscillators: a general theory, advanced numerical methods, and accurate phase computations
  publication-title: IEEE T. Comput. Aid. D.
  doi: 10.1109/TCAD.2010.2049056
– volume: 225
  start-page: 2645
  year: 2016
  ident: 2022112112322103600_ref17
  article-title: Global isochrons of a planar system near a phaseless set with saddle equilibria
  publication-title: Eur. Phys. J. Special Topics
  doi: 10.1140/epjst/e2016-60072-4
– volume: 4
  start-page: 1008
  year: 2005
  ident: 2022112112322103600_ref10
  article-title: Computing one-dimensional global manifolds of Poincaré maps by continuation
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/05062408X
– volume: 11
  start-page: 350
  year: 2012
  ident: 2022112112322103600_ref37
  article-title: Phase resetting in an asymptotically phaseless system: on the phase response of limit cycles verging on a heteroclinic orbit
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/110828976
– start-page: 117
  volume-title: Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems
  year: 2007
  ident: 2022112112322103600_ref21
  article-title: Computing invariant manifolds via the continuation of orbit segments
  doi: 10.1007/978-1-4020-6356-5_4
– volume: 58
  start-page: 121
  year: 2010
  ident: 2022112112322103600_ref2
  article-title: The isochronal fibration: characterization and implication in biology
  publication-title: Acta Biotheor.
  doi: 10.1007/s10441-010-9099-4
– volume: 16
  start-page: 15
  year: 1967
  ident: 2022112112322103600_ref42
  article-title: Biological rhythms and the behavior of populations of coupled oscillators
  publication-title: Theor. Biol.
  doi: 10.1016/0022-5193(67)90051-3
– volume: 9
  start-page: 659
  year: 2010
  ident: 2022112112322103600_ref38
  article-title: Dissecting the phase response of a model bursting neuron
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/090773519
– volume: 94
  year: 2016
  ident: 2022112112322103600_ref41
  article-title: Isostable reduction of periodic orbits
  publication-title: Phys. Rev. E (3)
  doi: 10.1103/PhysRevE.94.052213
– volume: 22
  year: 2012
  ident: 2022112112322103600_ref26
  article-title: On the use of Fourier averages to compute the global isochrons of (quasi) periodic dynamics
  publication-title: Chaos
  doi: 10.1063/1.4736859
– volume: 1
  start-page: 73
  year: 1974
  ident: 2022112112322103600_ref43
  article-title: Patterns of phase compromise in biological cycles
  publication-title: J. Math. Biol.
  doi: 10.1007/BF02339491
– volume: 30
  year: 2020
  ident: 2022112112322103600_ref33
  article-title: Global phase-amplitude description of oscillatory dynamics via the parameterization method
  publication-title: Chaos
  doi: 10.1063/5.0010149
– volume-title: The Geometry of Biological Time. Interdisciplinary Applied Mathematics
  year: 2001
  ident: 2022112112322103600_ref44
  doi: 10.1007/978-1-4757-3484-3
– volume: 10
  start-page: 1502
  year: 2011
  ident: 2022112112322103600_ref3
  article-title: Continuity of resetting a pacemaker in an excitable medium
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/100819229
– volume: 14
  start-page: 1418
  year: 2015
  ident: 2022112112322103600_ref24
  article-title: Forward-time and backward-time isochrons and their interactions
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/15M1010191
– volume: 24
  year: 2014
  ident: 2022112112322103600_ref23
  article-title: Solving Winfree’s puzzle: the isochrons in the FitzHugh–Nagumo model
  publication-title: Chaos
  doi: 10.1063/1.4867877
– volume: 15
  start-page: 1501
  year: 2016
  ident: 2022112112322103600_ref7
  article-title: A fast Eulerian approach for computation of global isochrons in high dimensions
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/140998615
– volume: 8
  start-page: 1005
  year: 2009
  ident: 2022112112322103600_ref16
  article-title: A computational and geometric approach to phase resetting curves and surfaces
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/080737666
– volume: 143
  start-page: 201
  year: 1969
  ident: 2022112112322103600_ref13
  article-title: Generic properties of polynomial vector fields at infinity
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-1969-0252788-8
– volume-title: Real Mathematical Analysis
  year: 2002
  ident: 2022112112322103600_ref34
  doi: 10.1007/978-0-387-21684-3
– volume-title: Elements of Applied Bifurcation Theory
  year: 2004
  ident: 2022112112322103600_ref22
  doi: 10.1007/978-1-4757-3978-7
– volume-title: Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields
  year: 1983
  ident: 2022112112322103600_ref15
  doi: 10.1007/978-1-4612-1140-2
– volume: 261
  start-page: 19
  year: 2013
  ident: 2022112112322103600_ref28
  article-title: Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics
  publication-title: Phys. D
  doi: 10.1016/j.physd.2013.06.004
– volume: 155
  start-page: 565
  year: 1989
  ident: 2022112112322103600_ref4
  article-title: Isochrones and the dynamics of kicked oscillators
  publication-title: Phys. A
  doi: 10.1016/0378-4371(89)90006-X
– volume: 308
  start-page: 40
  year: 2015
  ident: 2022112112322103600_ref27
  article-title: Extreme phase sensitivity in systems with fractal isochrons
  publication-title: Phys. D: Nonlinear Phenom.
  doi: 10.1016/j.physd.2015.06.004
– volume: 12
  start-page: 1763
  year: 2013
  ident: 2022112112322103600_ref19
  article-title: Computation of limit cycles and their isochrons: fast algorithms and their convergence
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/120901210
– volume: 182
  start-page: 487
  year: 2003
  ident: 2022112112322103600_ref35
  article-title: Non-periodic isochronous oscillations in plane differential systems
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/s10231-003-0078-0
– volume: 13
  start-page: 306
  year: 2014
  ident: 2022112112322103600_ref29
  article-title: Global isochrons and phase sensitivity of bursting neurons
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/130931151
– volume: 246
  start-page: R251
  year: 1984
  ident: 2022112112322103600_ref12
  article-title: Discontinuities in phase-resetting experiments
  publication-title: AJP-Reg
– year: 2007
  ident: 2022112112322103600_ref9
  article-title: AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations. With major contributions from Champneys
– volume: 9
  start-page: 35
  year: 1970
  ident: 2022112112322103600_ref20
  article-title: A classification of elementary cycles
  publication-title: Topology
  doi: 10.1016/0040-9383(70)90047-9
– start-page: 3
  volume-title: Advances in Dynamics, Optimization and Computation
  year: 2020
  ident: 2022112112322103600_ref25
  article-title: A continuation approach to computing phase resetting curves
  doi: 10.1007/978-3-030-51264-4_1
– volume: 23
  start-page: 1303
  year: 2010
  ident: 2022112112322103600_ref40
  article-title: Higher order approximation of isochrons
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/23/6/004
– volume: 15
  start-page: 763
  year: 2012
  ident: 2022112112322103600_ref1
  article-title: Oscillatory dynamics in the hippocampus support dentate gyrus-CA3 coupling
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3081
– start-page: 265
  volume-title: Proceedings of the Tenth Manitoba Conference on Numerical Mathematics and Computing
  year: 1981
  ident: 2022112112322103600_ref8
  article-title: AUTO: A program for the automatic bifurcation analysis of autonomous systems
– volume: 9
  start-page: 1201
  year: 2010
  ident: 2022112112322103600_ref31
  article-title: Continuation-based computation of global isochrons
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/090777244
– volume: 29
  start-page: 2877
  year: 2019
  ident: 2022112112322103600_ref32
  article-title: A geometric approach to phase response curves and its numerical computation through the parameterization method
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s00332-019-09561-4
– volume: 44
  start-page: 153
  year: 2012
  ident: 2022112112322103600_ref36
  article-title: Linearizations, normalizations and isochrones of planar differential systems
  publication-title: Rend. Ist. Mat. Univ. Trieste
– volume-title: Recipes for Continuation. Computational Science & Engineering
  year: 2013
  ident: 2022112112322103600_ref6
  doi: 10.1137/1.9781611972573
– volume: 16
  start-page: 640
  year: 2017
  ident: 2022112112322103600_ref11
  article-title: Saddle invariant objects and their global manifolds in a neighborhood of a homoclinic flip bifurcation of case B
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/16M1097419
– volume: 1
  start-page: 259
  year: 1975
  ident: 2022112112322103600_ref14
  article-title: Isochrons and phaseless sets
  publication-title: J. Math. Biol.
  doi: 10.1007/BF01273747
SSID ssj0002504487
Score 2.184148
Snippet The basins of attraction of periodic orbits or focus equilibria of a given vector field are foliated by forward-time isochrons, defined as all initial...
SourceID gale
crossref
SourceType Aggregation Database
Index Database
StartPage 1
SubjectTerms Bifurcation theory
Case studies
Title Isochron foliations and global bifurcations: a case study
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2398-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504487
  issn: 2398-4945
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2398-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504487
  issn: 2398-4945
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2398-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504487
  issn: 2398-4945
  databaseCode: TOX
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2398-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504487
  issn: 2398-4945
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2398-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504487
  issn: 2398-4945
  databaseCode: PIMPY
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FwAEOiKegQOUDEofKdLtre73cCqIKQhQOQcrN2sdYChQncpKql_53Zh9-gHIoBy6WtUrG9sxoXjvzLSGvczhRNAOaZoU1aSZVkeo6P0lFzqzKRK4Lbf1hE-L8vFws5LfJ5Lqbhbm8EE1TXl3J9X8VNa6hsN3o7D-IuyeKC3iPQscrih2vNxL8J-S3Q7w9qlcXy9jo5qrjEfpDL-tdG-t0YdLZoCMbwcz-GDmxMPXguz1-9fium37DYbz7fRTHpocA1_dlDiZ9ppomzmSr0djJ51btNj9Xaw8O-R7axvZ1X1fG8LHtDBNmiHXbWKHA5LbvpAqGzEEMohoE2Mi3sGctWuJipHBsr30P2FdL_NoWX_hs2yhDKRt8Wbd__5eL6xsPw5Y7rwKFKv7_FrnNRC6dUZx_XfQlOofulvkjFvu37WE_-XEgcRxJ_BHWTLvGyhimzB-Q-zG_SE6DXjwkE2gekXtfBuE9JrLTkGTQkARFmgQNScYa8i5RidOPxOvHE_L97OP8wyyNJ2ikxiWOKedWyRIKC1oUxlhFS9CcA9WSSwO21gyACQUlV9Jhu_Fa6wzXVakNsoQ_JdNm1cAzkhSGCiMwW8WgLrPUlsC4AZMxyExuLX1O3nQMqNYBKKXaz238peNP5QS7bZVRcRAEn-OwyKpTN_vMnCc-uDHNF-TuoHkvyXTb7uAVuWMut8tNe-gLLYdeuL8BFc913Q
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isochron+foliations+and+global+bifurcations%3A+a+case+study&rft.jtitle=Transactions+of+mathematics+and+its+applications+%3A+a+journal+of+the+IMA&rft.au=Hannam%2C+James&rft.au=Krauskopf%2C+Bernd&rft.au=Osinga%2C+Hinke+M&rft.date=2022-06-01&rft.issn=2398-4945&rft.eissn=2398-4945&rft.volume=6&rft.issue=2&rft_id=info:doi/10.1093%2Fimatrm%2Ftnac002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_imatrm_tnac002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-4945&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-4945&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-4945&client=summon