Isochron foliations and global bifurcations: a case study
The basins of attraction of periodic orbits or focus equilibria of a given vector field are foliated by forward-time isochrons, defined as all initial conditions that synchronize under the flow with a given phase. Similarly, backward-time isochrons of repelling periodic orbits or focus equilibria fo...
Uloženo v:
| Vydáno v: | Transactions of mathematics and its applications : a journal of the IMA Ročník 6; číslo 2; s. 1 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford University Press
01.06.2022
|
| Témata: | |
| ISSN: | 2398-4945, 2398-4945 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The basins of attraction of periodic orbits or focus equilibria of a given vector field are foliated by forward-time isochrons, defined as all initial conditions that synchronize under the flow with a given phase. Similarly, backward-time isochrons of repelling periodic orbits or focus equilibria foliate their respective basins of repulsion. We present a case study of a planar system that features a sequence of bifurcations, including a saddle-node bifurcation of periodic orbits, a homoclinic bifurcation and Hopf bifurcations, that change the nature and existence of periodic orbits. We explain how the basins and isochron foliations change throughout the sequence of bifurcations. In particular, we identify structurally stable tangencies between the foliations by forward-time and backward-time isochrons, which are curves in the plane, in regions of phase space where they exist simultaneously. Such tangencies are generically quadratic and associated with sharp turns of isochrons and phase sensitivity of the system. In contrast to the earlier reported cubic isochron foliation tangency (CIFT) mechanism, which generates a pair of tangency orbits, we find isochron foliation tangencies that occur along single specific orbits in the respective basin of attraction or repulsion. Moreover, the foliation tangencies we report arise from actual bifurcations of the system, while a CIFT is not associated with a topological change of the underlying phase portrait. The properties and interactions of isochron foliations are determined and illustrated by computing a representative number of forward-time and backward-time isochrons as arclength-parametrized curves with a boundary value problem set-up. Our algorithm for computing isochrons has been further refined and implemented in the Matlab package CoCo; it is made available as Matlab code in the supplementary material of this paper, together with a guide that walks the user through the computation of two specific isochron foliations. |
|---|---|
| AbstractList | The basins of attraction of periodic orbits or focus equilibria of a given vector field are foliated by forward-time isochrons, defined as all initial conditions that synchronize under the flow with a given phase. Similarly, backward-time isochrons of repelling periodic orbits or focus equilibria foliate their respective basins of repulsion. We present a case study of a planar system that features a sequence of bifurcations, including a saddle-node bifurcation of periodic orbits, a homoclinic bifurcation and Hopf bifurcations, that change the nature and existence of periodic orbits. We explain how the basins and isochron foliations change throughout the sequence of bifurcations. In particular, we identify structurally stable tangencies between the fohations by forward-time and backward-time isochrons, which are curves in the plane, in regions of phase space where they exist simultaneously. Such tangencies are generically quadratic and associated with sharp turns of isochrons and phase sensitivity of the system. In contrast to the earlier reported cubic isochron foliation tangency (CIFT) mechanism, which generates a pair of tangency orbits, we find isochron foliation tangencies that occur along single specific orbits in the respective basin of attraction or repulsion. Moreover, the fohation tangencies we report arise from actual bifurcations of the system, while a CIFT is not associated with a topological change of the underlying phase portrait. The properties and interactions of isochron fohations are determined and illustrated by computing a representative number of forward-time and backward-time isochrons as arclengthparametrized curves with a boundary value problem set-up. Our algorithm for computing isochrons has been further refined and implemented in the Matlab package CoCo; it is made available as Matlab code in the supplementary material of this paper, together with a guide that walks the user through the computation of two specific isochron fohations. Keywords: forward-time and backward-time isochrons; fohation tangencies; global bifurcations; phase sensitivity; boundary value problem formulation. The basins of attraction of periodic orbits or focus equilibria of a given vector field are foliated by forward-time isochrons, defined as all initial conditions that synchronize under the flow with a given phase. Similarly, backward-time isochrons of repelling periodic orbits or focus equilibria foliate their respective basins of repulsion. We present a case study of a planar system that features a sequence of bifurcations, including a saddle-node bifurcation of periodic orbits, a homoclinic bifurcation and Hopf bifurcations, that change the nature and existence of periodic orbits. We explain how the basins and isochron foliations change throughout the sequence of bifurcations. In particular, we identify structurally stable tangencies between the foliations by forward-time and backward-time isochrons, which are curves in the plane, in regions of phase space where they exist simultaneously. Such tangencies are generically quadratic and associated with sharp turns of isochrons and phase sensitivity of the system. In contrast to the earlier reported cubic isochron foliation tangency (CIFT) mechanism, which generates a pair of tangency orbits, we find isochron foliation tangencies that occur along single specific orbits in the respective basin of attraction or repulsion. Moreover, the foliation tangencies we report arise from actual bifurcations of the system, while a CIFT is not associated with a topological change of the underlying phase portrait. The properties and interactions of isochron foliations are determined and illustrated by computing a representative number of forward-time and backward-time isochrons as arclength-parametrized curves with a boundary value problem set-up. Our algorithm for computing isochrons has been further refined and implemented in the Matlab package CoCo; it is made available as Matlab code in the supplementary material of this paper, together with a guide that walks the user through the computation of two specific isochron foliations. |
| Audience | Academic |
| Author | Osinga, Hinke M Hannam, James Krauskopf, Bernd |
| Author_xml | – sequence: 1 givenname: James surname: Hannam fullname: Hannam, James – sequence: 2 givenname: Bernd surname: Krauskopf fullname: Krauskopf, Bernd – sequence: 3 givenname: Hinke M surname: Osinga fullname: Osinga, Hinke M |
| BookMark | eNpNkE1rAjEQhkOxUGu99pw_sJqvdZPeRPohCL2052WSTGzKuinJevDfd4tCZQ4zPMz7Hp57MulTj4Q8crbgzMhlPMCQD8uhB8eYuCFTIY2ulFH15Oq-I_NSvtn4UTOldDMlZluS-8qppyF1EYaY-kKh93TfJQsdtTEcszvzJwrUQUFahqM_PZDbAF3B-WXPyOfL88fmrdq9v243613lONeiktKD0bjyaJuVcx6YRislMmukceiDFYiiAdQSzErVSgZr1chBWyeaWs7I4ty7hw7b2Ic0ZHDjeDxEN1oIceRrzXkjeC31f8DlVErG0P7kUU8-tZy1f7Las6z2Ikv-AtQZYmY |
| Cites_doi | 10.1007/BFb0092042 10.1088/1751-8113/42/11/115101 10.1109/TCAD.2010.2049056 10.1140/epjst/e2016-60072-4 10.1137/05062408X 10.1137/110828976 10.1007/978-1-4020-6356-5_4 10.1007/s10441-010-9099-4 10.1016/0022-5193(67)90051-3 10.1137/090773519 10.1103/PhysRevE.94.052213 10.1063/1.4736859 10.1007/BF02339491 10.1063/5.0010149 10.1007/978-1-4757-3484-3 10.1137/100819229 10.1137/15M1010191 10.1063/1.4867877 10.1137/140998615 10.1137/080737666 10.1090/S0002-9947-1969-0252788-8 10.1007/978-0-387-21684-3 10.1007/978-1-4757-3978-7 10.1007/978-1-4612-1140-2 10.1016/j.physd.2013.06.004 10.1016/0378-4371(89)90006-X 10.1016/j.physd.2015.06.004 10.1137/120901210 10.1007/s10231-003-0078-0 10.1137/130931151 10.1016/0040-9383(70)90047-9 10.1007/978-3-030-51264-4_1 10.1088/0951-7715/23/6/004 10.1038/nn.3081 10.1137/090777244 10.1007/s00332-019-09561-4 10.1137/1.9781611972573 10.1137/16M1097419 10.1007/BF01273747 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 Oxford University Press |
| Copyright_xml | – notice: COPYRIGHT 2022 Oxford University Press |
| DBID | AAYXX CITATION |
| DOI | 10.1093/imatrm/tnac002 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2398-4945 |
| ExternalDocumentID | A811721538 10_1093_imatrm_tnac002 |
| GeographicLocations | New Zealand |
| GeographicLocations_xml | – name: New Zealand |
| GroupedDBID | 0R~ AAFWJ AAPXW AAVAP AAYXX ABDBF ABEJV ABGNP ABPTD ABXVV ACGFS ACUHS AENZO AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AMNDL BAYMD BENPR CCPQU CITATION ESX GROUPED_DOAJ IAO ITC KQ8 KSI M~E O9- OK1 PHGZM PHGZT PIMPY ROL TOX |
| ID | FETCH-LOGICAL-c1182-33da98e6deb76ccda08eb33e0b939cedfb2ee27ae83a964543fbb4edfa8bc2753 |
| ISSN | 2398-4945 |
| IngestDate | Tue Nov 04 18:21:12 EST 2025 Sat Nov 29 03:47:54 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1182-33da98e6deb76ccda08eb33e0b939cedfb2ee27ae83a964543fbb4edfa8bc2753 |
| OpenAccessLink | https://academic.oup.com/imatrm/article-pdf/6/2/tnac002/47139869/tnac002.pdf |
| ParticipantIDs | gale_infotracacademiconefile_A811721538 crossref_primary_10_1093_imatrm_tnac002 |
| PublicationCentury | 2000 |
| PublicationDate | 20220601 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 20220601 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Transactions of mathematics and its applications : a journal of the IMA |
| PublicationYear | 2022 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Ben Amor (2022112112322103600_ref2) 2010; 58 Langfield (2022112112322103600_ref23) 2014; 24 Sabatini (2022112112322103600_ref35) 2003; 182 Irwin (2022112112322103600_ref20) 1970; 9 England (2022112112322103600_ref10) 2005; 4 Huguet (2022112112322103600_ref19) 2013; 12 Borek (2022112112322103600_ref3) 2011; 10 Doedel (2022112112322103600_ref8) 1981 Krauskopf (2022112112322103600_ref21) 2007 Hirsch (2022112112322103600_ref18) 1977 Takeshita (2022112112322103600_ref40) 2010; 23 Giraldo (2022112112322103600_ref11) 2017; 16 Guckenheimer (2022112112322103600_ref14) 1975; 1 Osinga (2022112112322103600_ref31) 2010; 9 González-Velasco (2022112112322103600_ref13) 1969; 143 Dankowicz (2022112112322103600_ref6) 2013 Mauroy (2022112112322103600_ref28) 2013; 261 Winfree (2022112112322103600_ref44) 2001 Sabatini (2022112112322103600_ref36) 2012; 44 Campbell (2022112112322103600_ref4) 1989; 155 Hannam (2022112112322103600_ref17) 2016; 225 Mauroy (2022112112322103600_ref29) 2014; 13 Mauroy (2022112112322103600_ref27) 2015; 308 Wilson (2022112112322103600_ref41) 2016; 94 Dankowicz (2022112112322103600_ref5) 2009 Winfree (2022112112322103600_ref43) 1974; 1 Messias (2022112112322103600_ref30) 2009; 42 Guckenheimer (2022112112322103600_ref15) 1983 Akam (2022112112322103600_ref1) 2012; 15 Langfield (2022112112322103600_ref25) 2020 Detrixhe (2022112112322103600_ref7) 2016; 15 Langfield (2022112112322103600_ref24) 2015; 14 Pérez-Cervera (2022112112322103600_ref33) 2020; 30 Winfree (2022112112322103600_ref42) 1967; 16 Pugh (2022112112322103600_ref34) 2002 Glass (2022112112322103600_ref12) 1984; 246 Guillamon (2022112112322103600_ref16) 2009; 8 Sherwood (2022112112322103600_ref38) 2010; 9 Mauroy (2022112112322103600_ref26) 2012; 22 Kuznetsov (2022112112322103600_ref22) 2004 Şuvak (2022112112322103600_ref39) 2010; 29 Pérez-Cervera (2022112112322103600_ref32) 2019; 29 Doedel (2022112112322103600_ref9) 2007 Shaw (2022112112322103600_ref37) 2012; 11 |
| References_xml | – volume-title: Invariant manifolds year: 1977 ident: 2022112112322103600_ref18 article-title: Lecture Notes in Mathematics doi: 10.1007/BFb0092042 – volume: 42 year: 2009 ident: 2022112112322103600_ref30 article-title: Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system publication-title: J. Phys. A doi: 10.1088/1751-8113/42/11/115101 – year: 2009 ident: 2022112112322103600_ref5 article-title: Continuation Core and Toolboxes (COCO): Toolboxes for Parameter Continuation and Bifurcation Analysis – volume: 29 start-page: 1215 year: 2010 ident: 2022112112322103600_ref39 article-title: Quadratic approximations for the isochrons of oscillators: a general theory, advanced numerical methods, and accurate phase computations publication-title: IEEE T. Comput. Aid. D. doi: 10.1109/TCAD.2010.2049056 – volume: 225 start-page: 2645 year: 2016 ident: 2022112112322103600_ref17 article-title: Global isochrons of a planar system near a phaseless set with saddle equilibria publication-title: Eur. Phys. J. Special Topics doi: 10.1140/epjst/e2016-60072-4 – volume: 4 start-page: 1008 year: 2005 ident: 2022112112322103600_ref10 article-title: Computing one-dimensional global manifolds of Poincaré maps by continuation publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/05062408X – volume: 11 start-page: 350 year: 2012 ident: 2022112112322103600_ref37 article-title: Phase resetting in an asymptotically phaseless system: on the phase response of limit cycles verging on a heteroclinic orbit publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/110828976 – start-page: 117 volume-title: Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems year: 2007 ident: 2022112112322103600_ref21 article-title: Computing invariant manifolds via the continuation of orbit segments doi: 10.1007/978-1-4020-6356-5_4 – volume: 58 start-page: 121 year: 2010 ident: 2022112112322103600_ref2 article-title: The isochronal fibration: characterization and implication in biology publication-title: Acta Biotheor. doi: 10.1007/s10441-010-9099-4 – volume: 16 start-page: 15 year: 1967 ident: 2022112112322103600_ref42 article-title: Biological rhythms and the behavior of populations of coupled oscillators publication-title: Theor. Biol. doi: 10.1016/0022-5193(67)90051-3 – volume: 9 start-page: 659 year: 2010 ident: 2022112112322103600_ref38 article-title: Dissecting the phase response of a model bursting neuron publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/090773519 – volume: 94 year: 2016 ident: 2022112112322103600_ref41 article-title: Isostable reduction of periodic orbits publication-title: Phys. Rev. E (3) doi: 10.1103/PhysRevE.94.052213 – volume: 22 year: 2012 ident: 2022112112322103600_ref26 article-title: On the use of Fourier averages to compute the global isochrons of (quasi) periodic dynamics publication-title: Chaos doi: 10.1063/1.4736859 – volume: 1 start-page: 73 year: 1974 ident: 2022112112322103600_ref43 article-title: Patterns of phase compromise in biological cycles publication-title: J. Math. Biol. doi: 10.1007/BF02339491 – volume: 30 year: 2020 ident: 2022112112322103600_ref33 article-title: Global phase-amplitude description of oscillatory dynamics via the parameterization method publication-title: Chaos doi: 10.1063/5.0010149 – volume-title: The Geometry of Biological Time. Interdisciplinary Applied Mathematics year: 2001 ident: 2022112112322103600_ref44 doi: 10.1007/978-1-4757-3484-3 – volume: 10 start-page: 1502 year: 2011 ident: 2022112112322103600_ref3 article-title: Continuity of resetting a pacemaker in an excitable medium publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/100819229 – volume: 14 start-page: 1418 year: 2015 ident: 2022112112322103600_ref24 article-title: Forward-time and backward-time isochrons and their interactions publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/15M1010191 – volume: 24 year: 2014 ident: 2022112112322103600_ref23 article-title: Solving Winfree’s puzzle: the isochrons in the FitzHugh–Nagumo model publication-title: Chaos doi: 10.1063/1.4867877 – volume: 15 start-page: 1501 year: 2016 ident: 2022112112322103600_ref7 article-title: A fast Eulerian approach for computation of global isochrons in high dimensions publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/140998615 – volume: 8 start-page: 1005 year: 2009 ident: 2022112112322103600_ref16 article-title: A computational and geometric approach to phase resetting curves and surfaces publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/080737666 – volume: 143 start-page: 201 year: 1969 ident: 2022112112322103600_ref13 article-title: Generic properties of polynomial vector fields at infinity publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-1969-0252788-8 – volume-title: Real Mathematical Analysis year: 2002 ident: 2022112112322103600_ref34 doi: 10.1007/978-0-387-21684-3 – volume-title: Elements of Applied Bifurcation Theory year: 2004 ident: 2022112112322103600_ref22 doi: 10.1007/978-1-4757-3978-7 – volume-title: Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields year: 1983 ident: 2022112112322103600_ref15 doi: 10.1007/978-1-4612-1140-2 – volume: 261 start-page: 19 year: 2013 ident: 2022112112322103600_ref28 article-title: Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics publication-title: Phys. D doi: 10.1016/j.physd.2013.06.004 – volume: 155 start-page: 565 year: 1989 ident: 2022112112322103600_ref4 article-title: Isochrones and the dynamics of kicked oscillators publication-title: Phys. A doi: 10.1016/0378-4371(89)90006-X – volume: 308 start-page: 40 year: 2015 ident: 2022112112322103600_ref27 article-title: Extreme phase sensitivity in systems with fractal isochrons publication-title: Phys. D: Nonlinear Phenom. doi: 10.1016/j.physd.2015.06.004 – volume: 12 start-page: 1763 year: 2013 ident: 2022112112322103600_ref19 article-title: Computation of limit cycles and their isochrons: fast algorithms and their convergence publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/120901210 – volume: 182 start-page: 487 year: 2003 ident: 2022112112322103600_ref35 article-title: Non-periodic isochronous oscillations in plane differential systems publication-title: Ann. Mat. Pura Appl. doi: 10.1007/s10231-003-0078-0 – volume: 13 start-page: 306 year: 2014 ident: 2022112112322103600_ref29 article-title: Global isochrons and phase sensitivity of bursting neurons publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/130931151 – volume: 246 start-page: R251 year: 1984 ident: 2022112112322103600_ref12 article-title: Discontinuities in phase-resetting experiments publication-title: AJP-Reg – year: 2007 ident: 2022112112322103600_ref9 article-title: AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations. With major contributions from Champneys – volume: 9 start-page: 35 year: 1970 ident: 2022112112322103600_ref20 article-title: A classification of elementary cycles publication-title: Topology doi: 10.1016/0040-9383(70)90047-9 – start-page: 3 volume-title: Advances in Dynamics, Optimization and Computation year: 2020 ident: 2022112112322103600_ref25 article-title: A continuation approach to computing phase resetting curves doi: 10.1007/978-3-030-51264-4_1 – volume: 23 start-page: 1303 year: 2010 ident: 2022112112322103600_ref40 article-title: Higher order approximation of isochrons publication-title: Nonlinearity doi: 10.1088/0951-7715/23/6/004 – volume: 15 start-page: 763 year: 2012 ident: 2022112112322103600_ref1 article-title: Oscillatory dynamics in the hippocampus support dentate gyrus-CA3 coupling publication-title: Nat. Neurosci. doi: 10.1038/nn.3081 – start-page: 265 volume-title: Proceedings of the Tenth Manitoba Conference on Numerical Mathematics and Computing year: 1981 ident: 2022112112322103600_ref8 article-title: AUTO: A program for the automatic bifurcation analysis of autonomous systems – volume: 9 start-page: 1201 year: 2010 ident: 2022112112322103600_ref31 article-title: Continuation-based computation of global isochrons publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/090777244 – volume: 29 start-page: 2877 year: 2019 ident: 2022112112322103600_ref32 article-title: A geometric approach to phase response curves and its numerical computation through the parameterization method publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-019-09561-4 – volume: 44 start-page: 153 year: 2012 ident: 2022112112322103600_ref36 article-title: Linearizations, normalizations and isochrones of planar differential systems publication-title: Rend. Ist. Mat. Univ. Trieste – volume-title: Recipes for Continuation. Computational Science & Engineering year: 2013 ident: 2022112112322103600_ref6 doi: 10.1137/1.9781611972573 – volume: 16 start-page: 640 year: 2017 ident: 2022112112322103600_ref11 article-title: Saddle invariant objects and their global manifolds in a neighborhood of a homoclinic flip bifurcation of case B publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/16M1097419 – volume: 1 start-page: 259 year: 1975 ident: 2022112112322103600_ref14 article-title: Isochrons and phaseless sets publication-title: J. Math. Biol. doi: 10.1007/BF01273747 |
| SSID | ssj0002504487 |
| Score | 2.184148 |
| Snippet | The basins of attraction of periodic orbits or focus equilibria of a given vector field are foliated by forward-time isochrons, defined as all initial... |
| SourceID | gale crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 1 |
| SubjectTerms | Bifurcation theory Case studies |
| Title | Isochron foliations and global bifurcations: a case study |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2398-4945 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504487 issn: 2398-4945 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2398-4945 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504487 issn: 2398-4945 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVASL databaseName: Oxford University Press Open Access customDbUrl: eissn: 2398-4945 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504487 issn: 2398-4945 databaseCode: TOX dateStart: 20170101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2398-4945 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504487 issn: 2398-4945 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2398-4945 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504487 issn: 2398-4945 databaseCode: PIMPY dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZK4QAHxFOwwCoHJA6rsImdl7ktiFURsHAoqLfIdiZSYXGrtF3tZf8740ecgHpYDlyiymqnyXyjmfF45gshL9Hrq7QA4_1aGWdlrmLJWxozqUQOIi3BMvB9_1SenVWLBf86mVz1szAX56XW1eUlX_9XqHENwTajs_8AdxCKC_gZQccrwo7XawH_AfVtGG-P2tX50je6meq4p_6Qy3bX-Tqdm3RWGMhGNLM_RkHMTT3Ybo9fgd91Ew4cxqffR35sekhwbV_m4NJnQms_ky1GYycfO7Hb_FytLTnkW-h0E-q-poxhc9sZbpjB1219hQI3t6GTyjkyQzEYZ9zRRr6GPWveExcjg6N7_bvjvlri03Z4w6dbLVSS0CGW9ef3f4W40HjojtxZ7STU_vc3yE1a5tw4xfmXRSjRGXa3zL5iMdxtoP1kx07EsRfxR1oz7RsrfZoyv0fu-v1FdOLs4j6ZgH5A7nwewHtIeG8h0WAhEUIaOQuJxhbyJhKRsY_I2scj8u30_fzdLPZv0IiV2TjGjDWCV1A0IMtCqUYkFUjGIJGccQVNKykALQVUTHDD7cZaKTNcF5VUqBL2mEz1SsMTEqVAcwZZlTcCEx-aCMjLppCQpVnayrR4Sl71CqjXjiil3q9t_KbRT22A3XZCCT8Igv9juMjqEzP7TE0kPri2zGfk9mB5z8l02-3gBbmlLrbLTXdoCy2HFtzfCrx1rw |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isochron+foliations+and+global+bifurcations%3A+a+case+study&rft.jtitle=Transactions+of+mathematics+and+its+applications+%3A+a+journal+of+the+IMA&rft.au=Hannam%2C+James&rft.au=Krauskopf%2C+Bernd&rft.au=Osinga%2C+Hinke+M&rft.date=2022-06-01&rft.issn=2398-4945&rft.eissn=2398-4945&rft.volume=6&rft.issue=2&rft_id=info:doi/10.1093%2Fimatrm%2Ftnac002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_imatrm_tnac002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-4945&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-4945&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-4945&client=summon |