A Classical Theorem on the Singularities of Legendre Series in C3 and Associated System of Hyperbolic Partial Differential Equations

A classical theorem of Nehari relates the singularities of Legendre series expansions in $C_z$ with those of associated Taylor's series in $C_t$. The generalization of Nehari's theorem is known for Legendre series in $C_{z_1 \times z_2}$. In this paper, function theoretic methods develop t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis Jg. 28; H. 3; S. 704 - 714
1. Verfasser: McCoy, Peter A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Society for Industrial and Applied Mathematics 01.05.1997
Schlagworte:
ISSN:0036-1410, 1095-7154
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A classical theorem of Nehari relates the singularities of Legendre series expansions in $C_z$ with those of associated Taylor's series in $C_t$. The generalization of Nehari's theorem is known for Legendre series in $C_{z_1 \times z_2}$. In this paper, function theoretic methods develop the analogous relationships between the singularities of series expanded as triple products of Legendre polynomials in $C_{z_1 \times z_2 \times z_3}$ and those of associated analytic functions in $C_t$. The singularities of these generalized Legendre series are determined by certain elliptic curves. Moreover, these series satisfy a system of hyperbolic partial differential equations (PDEs) in $C^3$ that are connected to Bochner's study of Poisson processes in $R^2$.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0036-1410
1095-7154
DOI:10.1137/S0036141094273490