Enhancing the Reliability of Closed-Loop Medical Systems with Real-Time Biosignal Modeling
Biosignal monitoring using wearable and implantable devices (WIMDs) is driving the advent of highly personalized medicine. However, such devices may suffer from the same faulty behavior as any electronic system and may furthermore be targeted by malicious actors seeking to do harm. Closed-loop medic...
Uložené v:
| Vydané v: | Journal of hardware and systems security Ročník 8; číslo 1; s. 12 - 24 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
01.03.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 2509-3428, 2509-3436 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Biosignal monitoring using wearable and implantable devices (WIMDs) is driving the advent of highly personalized medicine. However, such devices may suffer from the same faulty behavior as any electronic system and may furthermore be targeted by malicious actors seeking to do harm. Closed-loop medical control systems, which monitor biosignals for data acquisition, contain and interact with many other components, any of which may be maliciously targeted or suffer a naturally occurring fault. Any measure aiming to improve the security and reliability of these systems must also consider the interplay between each component. In this paper, we explore the vulnerability of closed-loop medical control systems considering both individual system components and the system as a whole and utilize a predictive model based on a nonlinear autoregressive neural network (NARNN) to detect and correct faulty behavior in real time. We present a case study using a human bladder pressure dataset from nine subjects undergoing acute urodynamics testing. Signals are corrupted to simulate faulty sensor readings or malicious attacks and then processed using a custom bladder event detection algorithm designed for use in a closed-loop neuromodulation system. Using the proposed technique, 100% of faulty measurements were detected and corrected, so the control algorithm induced no additional false positives. We present the circuit-level implementation of the NARNN suitable for on-chip machine learning (ML)/artificial intelligence (AI) applications. We synthesized and generated the layout of the NARNN architecture in SAED 32
nm
technology. The implementation requires an area of
0.022
m
m
2
and a total power consumption of 0.31
mW
, which is suitable for WIMDs. |
|---|---|
| AbstractList | Biosignal monitoring using wearable and implantable devices (WIMDs) is driving the advent of highly personalized medicine. However, such devices may suffer from the same faulty behavior as any electronic system and may furthermore be targeted by malicious actors seeking to do harm. Closed-loop medical control systems, which monitor biosignals for data acquisition, contain and interact with many other components, any of which may be maliciously targeted or suffer a naturally occurring fault. Any measure aiming to improve the security and reliability of these systems must also consider the interplay between each component. In this paper, we explore the vulnerability of closed-loop medical control systems considering both individual system components and the system as a whole and utilize a predictive model based on a nonlinear autoregressive neural network (NARNN) to detect and correct faulty behavior in real time. We present a case study using a human bladder pressure dataset from nine subjects undergoing acute urodynamics testing. Signals are corrupted to simulate faulty sensor readings or malicious attacks and then processed using a custom bladder event detection algorithm designed for use in a closed-loop neuromodulation system. Using the proposed technique, 100% of faulty measurements were detected and corrected, so the control algorithm induced no additional false positives. We present the circuit-level implementation of the NARNN suitable for on-chip machine learning (ML)/artificial intelligence (AI) applications. We synthesized and generated the layout of the NARNN architecture in SAED 32 nm technology. The implementation requires an area of 0.022mm2 and a total power consumption of 0.31 mW, which is suitable for WIMDs. Biosignal monitoring using wearable and implantable devices (WIMDs) is driving the advent of highly personalized medicine. However, such devices may suffer from the same faulty behavior as any electronic system and may furthermore be targeted by malicious actors seeking to do harm. Closed-loop medical control systems, which monitor biosignals for data acquisition, contain and interact with many other components, any of which may be maliciously targeted or suffer a naturally occurring fault. Any measure aiming to improve the security and reliability of these systems must also consider the interplay between each component. In this paper, we explore the vulnerability of closed-loop medical control systems considering both individual system components and the system as a whole and utilize a predictive model based on a nonlinear autoregressive neural network (NARNN) to detect and correct faulty behavior in real time. We present a case study using a human bladder pressure dataset from nine subjects undergoing acute urodynamics testing. Signals are corrupted to simulate faulty sensor readings or malicious attacks and then processed using a custom bladder event detection algorithm designed for use in a closed-loop neuromodulation system. Using the proposed technique, 100% of faulty measurements were detected and corrected, so the control algorithm induced no additional false positives. We present the circuit-level implementation of the NARNN suitable for on-chip machine learning (ML)/artificial intelligence (AI) applications. We synthesized and generated the layout of the NARNN architecture in SAED 32 nm technology. The implementation requires an area of 0.022 m m 2 and a total power consumption of 0.31 mW , which is suitable for WIMDs. |
| Author | Mahmud, Shakil Zareen, Farhath Karam, Robert Olney, Brooks |
| Author_xml | – sequence: 1 givenname: Shakil surname: Mahmud fullname: Mahmud, Shakil email: shakilmahmud@usf.edu organization: Department of Computer Science and Engineering, University of South Florida – sequence: 2 givenname: Farhath surname: Zareen fullname: Zareen, Farhath organization: Department of Computer Science and Engineering, University of South Florida – sequence: 3 givenname: Brooks surname: Olney fullname: Olney, Brooks organization: Department of Computer Science and Engineering, University of South Florida – sequence: 4 givenname: Robert surname: Karam fullname: Karam, Robert organization: Department of Computer Science and Engineering, University of South Florida |
| BookMark | eNp9kD1PwzAURS1UJErpH2CyxGx4tpM4GaEqH1IrJCgLi-Ukz61RGpc4Feq_xxAEG9N9w7lXT-eUjFrfIiHnHC45gLoKCc9kykBIBsATYMkRGYsUCiYTmY1-b5GfkGkIrgTJRSZVIcfkdd5uTFu5dk37DdInbJwpXeP6A_WWzhofsGYL73d0ibWrTEOfD6HHbaAfrt9E3jRs5bZIb5wPbt1GYOnruNKuz8ixNU3A6U9OyMvtfDW7Z4vHu4fZ9YJVnKcJUyWKEhJZFjFqnpfK5EaKOi0QUlvUqs6szDIFKUplLXCLKq9QKFNJVeZSTsjFsLvr_PseQ6_f_L6LnwQtIecpB6UgUmKgqs6H0KHVu85tTXfQHPSXRj1o1FGj_taok1iSQylEuF1j9zf9T-sTbqd2OQ |
| Cites_doi | 10.1001/jama.280.11.951 10.1109/MWSCAS54063.2022.9859332 10.1109/SP.2014.40 10.1145/3394885.3431639 10.1145/3176258.3176310 10.1049/iet-net.2017.0110 10.1017/S0950268816003216 10.1016/j.wneu.2016.05.010 10.1109/SM2C.2017.8071825 10.1109/ACCESS.2019.2898154 10.1109/GLOCOM.2010.5685228 10.1155/2021/6611091 10.1186/s42234-018-0015-6 10.1145/2991079.2991094 10.1016/j.asoc.2019.105970 10.1109/VTS48691.2020.9107582 10.1161/JAHA.119.015139 10.1016/j.eswa.2016.08.065 10.1109/ACCESS.2017.2694446 10.1109/ISCAS.2019.8702493 10.1016/j.jbi.2015.04.007 10.1016/j.jnlssr.2020.06.007 10.1109/AICAS54282.2022.9869935 10.1016/j.eswa.2020.113807 10.1109/JBHI.2020.2988449 10.1016/j.pcad.2021.06.003 10.1126/scitranslmed.aaw4949 10.1155/2020/5057801 10.1109/BIBM.2016.7822620 10.1007/978-981-15-2329-8_22 10.1111/dme.14252 10.1109/EMBC.2016.7592043 10.3390/en9090684 10.1177/1932296820922622 10.1016/j.energy.2020.119397 10.1038/s41467-021-23180-2 10.1109/ICCD56317.2022.00091 10.4236/jcc.2018.69002 10.1109/IEMBS.2011.6090453 10.1007/978-3-031-45878-1_14 10.3390/sym13020357 10.1109/ACCESS.2019.2923707 10.1007/s11277-020-07464-2 10.1145/2228360.2228364 10.1109/SP.2008.31 10.1007/978-1-4614-9434-8_2 10.1007/s00125-021-05391-w 10.1080/17434440.2018.1483235 10.1109/JBHI.2019.2908488 10.1213/ANE.0b013e3182973687 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s41635-023-00140-4 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central (subscription) Technology collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central (subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2509-3436 |
| EndPage | 24 |
| ExternalDocumentID | 10_1007_s41635_023_00140_4 |
| GroupedDBID | -EM 0R~ 406 AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYUE ABAKF ABDZT ABECU ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFKRA AFQWF AGDGC AGMZJ AGQEE AGRTI AHKAY AHSBF AIAKS AIGIU AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ARAPS AXYYD BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FIGPU FINBP FNLPD FSGXE GGCAI GJIRD H13 HCIFZ IKXTQ IWAJR J-C JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9J PT4 PTHSS RLLFE ROL RSV SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW Z7R Z7X Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c1154-7be2b043b92b0d18b7a8a32d59e05f9d7d6f366705e37ff01fe78ce27ac37b833 |
| IEDL.DBID | M7S |
| ISSN | 2509-3428 |
| IngestDate | Wed Nov 05 03:34:03 EST 2025 Sat Nov 29 06:03:13 EST 2025 Fri Feb 21 02:39:02 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Biosignal Closed-loop system Neural network Implantable medical device Nonlinear autoregressive |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1154-7be2b043b92b0d18b7a8a32d59e05f9d7d6f366705e37ff01fe78ce27ac37b833 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3081510770 |
| PQPubID | 6623297 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3081510770 crossref_primary_10_1007_s41635_023_00140_4 springer_journals_10_1007_s41635_023_00140_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20240300 2024-03-00 20240301 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 3 year: 2024 text: 20240300 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Gainesville |
| PublicationTitle | Journal of hardware and systems security |
| PublicationTitleAbbrev | J Hardw Syst Secur |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Boughton CK, Hovorka R (2019) Advances in artificial pancreas systems. Sci Transl Med 11(484) BahramiMForouzanfarMSleep apnea detection from single-lead ECG: a comprehensive analysis of machine learning and deep learning algorithmsIEEE Trans Instrum Meas202271111 Duan J, Zuo H, Bai Y, Duan J, Chang M, Chen B (2021) Short-term wind speed forecasting using recurrent neural networks with error correction. Energy 217:119397 RaturiRSargsyanHA nonlinear autoregressive scheme for time series prediction via artificial neural networksJ Comput Commun201869142310.4236/jcc.2018.69002 Olney B, Mahmud S, Karam R (2022) Efficient nonlinear autoregressive neural network architecture for real-time biomedical applications. In: 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 411–414. IEEE RahmanMSKhalilIYiXReversible biosignal steganography approach for authenticating biosignals using extended binary Golay codeIEEE J Biomed Health Inform2020251354610.1109/JBHI.2020.2988449 Eberle W, Penders J, Yazicioglu RF (2011) Closing the loop for deep brain stimulation implants enables personalized healthcare for Parkinson’s disease patients. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1556–1558. IEEE Olney B, Mahmud S, Zaman MA, Karam R (2022) An EDA framework for design space exploration of on-chip AI in bioimplantable applications. In: 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1–4. IEEE KovatchevBAutomated closed-loop control of diabetes: the artificial pancreasBioelectron Med20184111210.1186/s42234-018-0015-6 FDA: technical considerations for medical devices with physiologic closed-loop control technology (2021) https://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-medical-devices-physiologic-closed-loop-control-technology RuizLGBCuéllarMPCalvo-FloresMDJiménezMDCPAn application of non-linear autoregressive neural networks to predict energy consumption in public buildingsEnergies20169968410.3390/en9090684 KaramRBourbeauDMajerusSMakoveyIGoldmanHBDamaserMSBhuniaSReal-time classification of bladder events for effective diagnosis and treatment of urinary incontinenceIEEE Trans Biomed Eng2015634721729 MiddourTGChenJHEl-ChamiMFLeadless pacemakers: a review of current data and future directionsProg Cardiovasc Dis202166616910.1016/j.pcad.2021.06.003 Implantable medical devices market size, share, report 2022-2030. https://www.biospace.com/article/implantable-medical-devices-market-size-share-report-2022-2030 VoelkerRInternational group seeks to dispel incontinence “Taboo”JAMA19982801195195310.1001/jama.280.11.951 Mahmud S, Zareen F, Olney B, Karam R et al (2022) Trojan resilience in implantable and wearable medical devices with virtual biosensing. In: 2022 IEEE 40th International Conference on Computer Design (ICCD), pp. 577–584. IEEE DumontGAAnserminoJMClosed-loop control of anesthesia: a primer for anesthesiologistsAnesth Analg201311751130113810.1213/ANE.0b013e3182973687 PycroftLBoccardSGOwenSLSteinJFFitzgeraldJJGreenALAzizTZBrainjacking: implant security issues in invasive neuromodulationWorld Neurosurg20169245446210.1016/j.wneu.2016.05.010 Khan W, Muntimadugu E, Jaffe M, Domb AJ (2014) Implantable medical devices. In: Focal controlled drug delivery, pp. 33–59. Springer HerreroRSt-PierreCDynamic forward error correction in wireless real-time internet of things networksIET Networks20176621822310.1049/iet-net.2017.0110 Xu Q, Arafin MT, Qu G (2021) Security of neural networks from hardware perspective: a survey and beyond. In: Proceedings of the 26th Asia and South Pacific Design Automation Conference, pp. 449–454 GavinHPThe Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems2019Duke University ppDepartment of Civil and Environmental Engineering119 WangKDengCLiJZhangYLiXWuMHybrid methodology for tuberculosis incidence time-series forecasting based on ARIMA and a NAR neural networkEpidemiol Infect201714561118112910.1017/S0950268816003216 ChenMHaoYHwangKWangLWangLDisease prediction by machine learning over big data from healthcare communitiesIEEE Access201758869887910.1109/ACCESS.2017.2694446 IqbalNAhmadSKimDHHealth monitoring system for elderly patients using intelligent task mapping mechanism in closed loop healthcare environmentSymmetry202113235710.3390/sym13020357 Hamdi T, Ali JB, Fnaiech N, Di Costanzo V, Fnaiech F, Moreau E, Ginoux JM (2017) Artificial neural network for blood glucose level prediction. In: 2017 International Conference on Smart, Monitored and Controlled Cities (SM2C), pp. 91–95. IEEE Liu Z, Ye J, Hu X, Li H, Li X, Hu Y (2020) Sequence triggered hardware Trojan in neural network accelerator. In: 2020 IEEE 38th VLSI Test Symposium (VTS), pp. 1–6. IEEE CamaraCPeris-LopezPTapiadorJESecurity and privacy issues in implantable medical devices: a comprehensive surveyJ Biomed Inform20155527228910.1016/j.jbi.2015.04.007 AbdarMZomorodi-MoghadamMDasRTingIHPerformance analysis of classification algorithms on early detection of liver diseaseExpert Syst Appl20176723925110.1016/j.eswa.2016.08.065 GhazalyNMAbdel-FattahMAEl-AzizANovel coronavirus forecasting model using nonlinear autoregressive artificial neural networkInt J Adv Sci Technol202029519 Merchant FM, Levy WC, Kramer DB (2020) Time to shock the system: moving beyond the current paradigm for primary prevention implantable cardioverter-defibrillator use. J Am Heart Assoc 9(5):e015139 Rushanan M, Rubin AD, Kune DF, Swanson CM (2014) SoK: security and privacy in implantable medical devices and body area networks. In: 2014 IEEE symposium on security and privacy, pp. 524–539. IEEE Hei X, Du X, Wu J, Hu F (2010) Defending resource depletion attacks on implantable medical devices. In: 2010 IEEE global telecommunications conference GLOBECOM 2010, pp. 1–5. IEEE LawtonJKimbellBRankinDAshcroftNVargheseLAllenJBoughtonCCampbellFRandellTBesserRHealth professionals’ views about who would benefit from using a closed-loop system: a qualitative studyDiabet Med20203761030103710.1111/dme.14252 AliJBHamdiTFnaiechNDi CostanzoVFnaiechFGinouxJMContinuous blood glucose level prediction of type 1 diabetes based on artificial neural networkBioprocess Biosyst Eng2018384828840 Karam R, Bhunia S, Majerus S, Brose SW, Damaser MS, Bourbeau D (2016) Real-time, autonomous bladder event classification and closed-loop control from single-channel pressure data. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5789–5792. IEEE Rakovic V, Adamovski R, Risteski A, Gavrilovska L (2020) Improving energy efficiency and reliability in WuR-based IoT systems: an error correction approach. Wirel Pers Commun pp. 1–12 Boughton CK, Hovorka R (2021) New closed-loop insulin systems. Diabetologia pp. 1–9 LiKDanielsJLiuCHerreroPGeorgiouPConvolutional recurrent neural networks for glucose predictionIEEE J Biomed Health Inform201924260361310.1109/JBHI.2019.2908488 Halperin D, Heydt-Benjamin TS, Ransford B, Clark SS, Defend B, Morgan W, Fu K, Kohno T, Maisel WH (2008) Pacemakers and implantable cardiac defibrillators: software radio attacks and zero-power defenses. In: 2008 IEEE Symposium on Security and Privacy (sp 2008), pp. 129–142. IEEE Wang A, Wang J, Lin H, Zhang J, Yang Z, Xu K (2016) Biomedical event extraction based on distributed representation and deep learning. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 775. IEEE YadavSSJadhavSMDetection of common risk factors for diagnosis of cardiac arrhythmia using machine learning algorithmExpert Syst Appl202116310.1016/j.eswa.2020.113807 Asad M, Qamar U, Abbas M (2021) Blood glucose level prediction of diabetic type 1 patients using nonlinear autoregressive neural networks. J Healthc Eng 2021 Burleson W, Clark SS, Ransford B, Fu K (2012) Design challenges for secure implantable medical devices. In: DAC Design Automation Conference 2012, pp. 12–17. IEEE JeonKKimJRyuJJYooSJSongCYangMKJeongDSKimGHSelf-rectifying resistive memory in passive crossbar arraysNat Commun2021121296810.1038/s41467-021-23180-2 HiraiYMatsuokaTTaniSIsamiSTatsumiKUedaMKamataTA biomedical sensor system with stochastic A/D conversion and error correction by machine learningIEEE Access20197219902200110.1109/ACCESS.2019.2898154 Consumers (medical devices): How are medical devices classified. Food and Drug Administration. https://www.fda.gov/medical-devices/resources-you-medical-devices/consumers-medical-devices#How_are_Medical_Devices_Classified PycroftLAzizTZSecurity of implantable medical devices with wireless connections: the dangers of cyber-attacksExpert Rev Med Devices201815640340610.1080/17434440.2018.1483235 Marin E, Singelée D, Yang B, Volski V, Vandenbosch GA, Nuttin B, Preneel B (2018) Securing wireless neurostimulators. In: Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy, pp. 287–298 Clements J, Lao Y (2019) Hardware Trojan design on neural networks. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. https://doi.org/10.1109/ISCAS.2019.8702493 DaveDDeSalvoDJHaridasBMcKaySShenoyAKohCJLawleyMErraguntlaMFeature-based machine learning model for real-time hypoglycemia predictionJ Diabetes Sci Technol202115484285510.1177/1932296820922622 KhanFMGuptaRARIMA and NAR based prediction model for time series analysis of COVID-19 cases in IndiaJournal of Safety Science and Resilience202011121810.1016/j.jnlssr.2020.06.007 Mahmud S, Keller M, Ahmed S, Karam R (2023) FAMID: false alarms mitigation in IoMT devices. In: IFIP International Internet of Things Conference, pp. 199–217. Springer de Oliveira JFL, Pacífico LDS, de Mattos Neto PSG, Barreiros, EFS, de Oliveira Rodrigues CM, de Almeida Filho AT (2020) A hybrid optimized error correction system for time series forecasting. Appl Soft Comput 87:105970 Benrhmach G, Namir K, Namir A, Bouyaghroumni J (2020) Nonlinear autoregressive neural ne 140_CR36 M Abdar (140_CR29) 2017; 67 140_CR37 L Pycroft (140_CR54) 2016; 92 K Jeon (140_CR57) 2021; 12 GA Dumont (140_CR21) 2013; 117 HP Gavin (140_CR56) 2019 K Li (140_CR31) 2019; 24 K Wang (140_CR40) 2017; 145 140_CR41 D Dave (140_CR33) 2021; 15 140_CR22 C Camara (140_CR6) 2015; 55 M Bahrami (140_CR35) 2022; 71 140_CR25 140_CR26 B Kovatchev (140_CR27) 2018; 4 M Chen (140_CR30) 2017; 5 LGB Ruiz (140_CR15) 2016; 9 NM Ghazaly (140_CR38) 2020; 29 MS Rahman (140_CR49) 2020; 25 140_CR10 140_CR55 140_CR13 140_CR14 140_CR58 140_CR9 140_CR59 140_CR16 Y Hirai (140_CR48) 2019; 7 140_CR17 140_CR18 R Herrero (140_CR44) 2017; 6 140_CR5 140_CR8 140_CR7 140_CR2 140_CR1 JB Ali (140_CR42) 2018; 38 140_CR3 N Iqbal (140_CR23) 2021; 13 S Mohan (140_CR32) 2019; 7 FM Khan (140_CR39) 2020; 1 140_CR60 R Karam (140_CR19) 2015; 63 140_CR20 140_CR43 140_CR45 140_CR46 L Pycroft (140_CR11) 2018; 15 140_CR47 J Lawton (140_CR24) 2020; 37 R Voelker (140_CR28) 1998; 280 TG Middour (140_CR4) 2021; 66 R Raturi (140_CR12) 2018; 6 SS Yadav (140_CR34) 2021; 163 140_CR50 140_CR51 140_CR52 140_CR53 |
| References_xml | – reference: RuizLGBCuéllarMPCalvo-FloresMDJiménezMDCPAn application of non-linear autoregressive neural networks to predict energy consumption in public buildingsEnergies20169968410.3390/en9090684 – reference: Benrhmach G, Namir K, Namir A, Bouyaghroumni J (2020) Nonlinear autoregressive neural network and extended Kalman filters for prediction of financial time series. J Appl Math 2020 – reference: MiddourTGChenJHEl-ChamiMFLeadless pacemakers: a review of current data and future directionsProg Cardiovasc Dis202166616910.1016/j.pcad.2021.06.003 – reference: CamaraCPeris-LopezPTapiadorJESecurity and privacy issues in implantable medical devices: a comprehensive surveyJ Biomed Inform20155527228910.1016/j.jbi.2015.04.007 – reference: LiKDanielsJLiuCHerreroPGeorgiouPConvolutional recurrent neural networks for glucose predictionIEEE J Biomed Health Inform201924260361310.1109/JBHI.2019.2908488 – reference: Liu Z, Ye J, Hu X, Li H, Li X, Hu Y (2020) Sequence triggered hardware Trojan in neural network accelerator. In: 2020 IEEE 38th VLSI Test Symposium (VTS), pp. 1–6. IEEE – reference: PycroftLAzizTZSecurity of implantable medical devices with wireless connections: the dangers of cyber-attacksExpert Rev Med Devices201815640340610.1080/17434440.2018.1483235 – reference: Olney B, Mahmud S, Karam R (2022) Efficient nonlinear autoregressive neural network architecture for real-time biomedical applications. In: 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 411–414. IEEE – reference: Marin E, Singelée D, Garcia FD, Chothia T, Willems R, Preneel B (2016) On the (in) security of the latest generation implantable cardiac defibrillators and how to secure them. In: Proceedings of the 32nd annual conference on computer security applications, pp. 226–236 – reference: Asad M, Qamar U, Abbas M (2021) Blood glucose level prediction of diabetic type 1 patients using nonlinear autoregressive neural networks. J Healthc Eng 2021 – reference: DaveDDeSalvoDJHaridasBMcKaySShenoyAKohCJLawleyMErraguntlaMFeature-based machine learning model for real-time hypoglycemia predictionJ Diabetes Sci Technol202115484285510.1177/1932296820922622 – reference: Mahmud S, Keller M, Ahmed S, Karam R (2023) FAMID: false alarms mitigation in IoMT devices. In: IFIP International Internet of Things Conference, pp. 199–217. Springer – reference: JeonKKimJRyuJJYooSJSongCYangMKJeongDSKimGHSelf-rectifying resistive memory in passive crossbar arraysNat Commun2021121296810.1038/s41467-021-23180-2 – reference: Rushanan M, Rubin AD, Kune DF, Swanson CM (2014) SoK: security and privacy in implantable medical devices and body area networks. In: 2014 IEEE symposium on security and privacy, pp. 524–539. IEEE – reference: Food U, Administration D et al (2017) Cfr-code of federal regulations title 21 – reference: HerreroRSt-PierreCDynamic forward error correction in wireless real-time internet of things networksIET Networks20176621822310.1049/iet-net.2017.0110 – reference: de Oliveira JFL, Pacífico LDS, de Mattos Neto PSG, Barreiros, EFS, de Oliveira Rodrigues CM, de Almeida Filho AT (2020) A hybrid optimized error correction system for time series forecasting. Appl Soft Comput 87:105970 – reference: KovatchevBAutomated closed-loop control of diabetes: the artificial pancreasBioelectron Med20184111210.1186/s42234-018-0015-6 – reference: HiraiYMatsuokaTTaniSIsamiSTatsumiKUedaMKamataTA biomedical sensor system with stochastic A/D conversion and error correction by machine learningIEEE Access20197219902200110.1109/ACCESS.2019.2898154 – reference: Khan W, Muntimadugu E, Jaffe M, Domb AJ (2014) Implantable medical devices. In: Focal controlled drug delivery, pp. 33–59. Springer – reference: RaturiRSargsyanHA nonlinear autoregressive scheme for time series prediction via artificial neural networksJ Comput Commun201869142310.4236/jcc.2018.69002 – reference: Xu Q, Arafin MT, Qu G (2021) Security of neural networks from hardware perspective: a survey and beyond. In: Proceedings of the 26th Asia and South Pacific Design Automation Conference, pp. 449–454 – reference: KaramRBourbeauDMajerusSMakoveyIGoldmanHBDamaserMSBhuniaSReal-time classification of bladder events for effective diagnosis and treatment of urinary incontinenceIEEE Trans Biomed Eng2015634721729 – reference: Clements J, Lao Y (2019) Hardware Trojan design on neural networks. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. https://doi.org/10.1109/ISCAS.2019.8702493 – reference: Mahmud S, Zareen F, Olney B, Karam R et al (2022) Trojan resilience in implantable and wearable medical devices with virtual biosensing. In: 2022 IEEE 40th International Conference on Computer Design (ICCD), pp. 577–584. IEEE – reference: AliJBHamdiTFnaiechNDi CostanzoVFnaiechFGinouxJMContinuous blood glucose level prediction of type 1 diabetes based on artificial neural networkBioprocess Biosyst Eng2018384828840 – reference: Li C, Raghunathan A, Jha NK (2011) Hijacking an insulin pump: security attacks and defenses for a diabetes therapy system. In: 2011 IEEE 13th International Conference on e-Health Networking, Applications and Services, pp. 150–156. IEEE – reference: YadavSSJadhavSMDetection of common risk factors for diagnosis of cardiac arrhythmia using machine learning algorithmExpert Syst Appl202116310.1016/j.eswa.2020.113807 – reference: GhazalyNMAbdel-FattahMAEl-AzizANovel coronavirus forecasting model using nonlinear autoregressive artificial neural networkInt J Adv Sci Technol202029519 – reference: Karam R, Bhunia S, Majerus S, Brose SW, Damaser MS, Bourbeau D (2016) Real-time, autonomous bladder event classification and closed-loop control from single-channel pressure data. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5789–5792. IEEE – reference: Duan J, Zuo H, Bai Y, Duan J, Chang M, Chen B (2021) Short-term wind speed forecasting using recurrent neural networks with error correction. Energy 217:119397 – reference: IqbalNAhmadSKimDHHealth monitoring system for elderly patients using intelligent task mapping mechanism in closed loop healthcare environmentSymmetry202113235710.3390/sym13020357 – reference: KhanFMGuptaRARIMA and NAR based prediction model for time series analysis of COVID-19 cases in IndiaJournal of Safety Science and Resilience202011121810.1016/j.jnlssr.2020.06.007 – reference: Halperin D, Heydt-Benjamin TS, Ransford B, Clark SS, Defend B, Morgan W, Fu K, Kohno T, Maisel WH (2008) Pacemakers and implantable cardiac defibrillators: software radio attacks and zero-power defenses. In: 2008 IEEE Symposium on Security and Privacy (sp 2008), pp. 129–142. IEEE – reference: Boughton CK, Hovorka R (2021) New closed-loop insulin systems. Diabetologia pp. 1–9 – reference: Boughton CK, Hovorka R (2019) Advances in artificial pancreas systems. Sci Transl Med 11(484) – reference: AbdarMZomorodi-MoghadamMDasRTingIHPerformance analysis of classification algorithms on early detection of liver diseaseExpert Syst Appl20176723925110.1016/j.eswa.2016.08.065 – reference: Burleson W, Clark SS, Ransford B, Fu K (2012) Design challenges for secure implantable medical devices. In: DAC Design Automation Conference 2012, pp. 12–17. IEEE – reference: DumontGAAnserminoJMClosed-loop control of anesthesia: a primer for anesthesiologistsAnesth Analg201311751130113810.1213/ANE.0b013e3182973687 – reference: MohanSThirumalaiCSrivastavaGEffective heart disease prediction using hybrid machine learning techniquesIEEE Access20197815428155410.1109/ACCESS.2019.2923707 – reference: VoelkerRInternational group seeks to dispel incontinence “Taboo”JAMA19982801195195310.1001/jama.280.11.951 – reference: ChenMHaoYHwangKWangLWangLDisease prediction by machine learning over big data from healthcare communitiesIEEE Access201758869887910.1109/ACCESS.2017.2694446 – reference: WangKDengCLiJZhangYLiXWuMHybrid methodology for tuberculosis incidence time-series forecasting based on ARIMA and a NAR neural networkEpidemiol Infect201714561118112910.1017/S0950268816003216 – reference: LawtonJKimbellBRankinDAshcroftNVargheseLAllenJBoughtonCCampbellFRandellTBesserRHealth professionals’ views about who would benefit from using a closed-loop system: a qualitative studyDiabet Med20203761030103710.1111/dme.14252 – reference: Hamdi T, Ali JB, Fnaiech N, Di Costanzo V, Fnaiech F, Moreau E, Ginoux JM (2017) Artificial neural network for blood glucose level prediction. In: 2017 International Conference on Smart, Monitored and Controlled Cities (SM2C), pp. 91–95. IEEE – reference: Olney B, Mahmud S, Zaman MA, Karam R (2022) An EDA framework for design space exploration of on-chip AI in bioimplantable applications. In: 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1–4. IEEE – reference: FDA: technical considerations for medical devices with physiologic closed-loop control technology (2021) https://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-medical-devices-physiologic-closed-loop-control-technology – reference: GavinHPThe Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems2019Duke University ppDepartment of Civil and Environmental Engineering119 – reference: Implantable medical devices market size, share, report 2022-2030. https://www.biospace.com/article/implantable-medical-devices-market-size-share-report-2022-2030/ – reference: Le VM, Pham BT, Le TT, Ly HB, Le LM (2020) Daily rainfall prediction using nonlinear autoregressive neural network. Micro-Electronics and Telecommunication Engineering pp. 213–221 – reference: Consumers (medical devices): How are medical devices classified. Food and Drug Administration. https://www.fda.gov/medical-devices/resources-you-medical-devices/consumers-medical-devices#How_are_Medical_Devices_Classified_ – reference: BahramiMForouzanfarMSleep apnea detection from single-lead ECG: a comprehensive analysis of machine learning and deep learning algorithmsIEEE Trans Instrum Meas202271111 – reference: Merchant FM, Levy WC, Kramer DB (2020) Time to shock the system: moving beyond the current paradigm for primary prevention implantable cardioverter-defibrillator use. J Am Heart Assoc 9(5):e015139 – reference: Marin E, Singelée D, Yang B, Volski V, Vandenbosch GA, Nuttin B, Preneel B (2018) Securing wireless neurostimulators. In: Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy, pp. 287–298 – reference: Hei X, Du X, Wu J, Hu F (2010) Defending resource depletion attacks on implantable medical devices. In: 2010 IEEE global telecommunications conference GLOBECOM 2010, pp. 1–5. IEEE – reference: Eberle W, Penders J, Yazicioglu RF (2011) Closing the loop for deep brain stimulation implants enables personalized healthcare for Parkinson’s disease patients. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1556–1558. IEEE – reference: Rakovic V, Adamovski R, Risteski A, Gavrilovska L (2020) Improving energy efficiency and reliability in WuR-based IoT systems: an error correction approach. Wirel Pers Commun pp. 1–12 – reference: Wang A, Wang J, Lin H, Zhang J, Yang Z, Xu K (2016) Biomedical event extraction based on distributed representation and deep learning. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 775. IEEE – reference: RahmanMSKhalilIYiXReversible biosignal steganography approach for authenticating biosignals using extended binary Golay codeIEEE J Biomed Health Inform2020251354610.1109/JBHI.2020.2988449 – reference: PycroftLBoccardSGOwenSLSteinJFFitzgeraldJJGreenALAzizTZBrainjacking: implant security issues in invasive neuromodulationWorld Neurosurg20169245446210.1016/j.wneu.2016.05.010 – volume: 280 start-page: 951 issue: 11 year: 1998 ident: 140_CR28 publication-title: JAMA doi: 10.1001/jama.280.11.951 – ident: 140_CR37 doi: 10.1109/MWSCAS54063.2022.9859332 – ident: 140_CR55 doi: 10.1109/SP.2014.40 – ident: 140_CR58 doi: 10.1145/3394885.3431639 – ident: 140_CR10 doi: 10.1145/3176258.3176310 – volume: 29 start-page: 19 issue: 5 year: 2020 ident: 140_CR38 publication-title: Int J Adv Sci Technol – volume: 6 start-page: 218 issue: 6 year: 2017 ident: 140_CR44 publication-title: IET Networks doi: 10.1049/iet-net.2017.0110 – volume: 145 start-page: 1118 issue: 6 year: 2017 ident: 140_CR40 publication-title: Epidemiol Infect doi: 10.1017/S0950268816003216 – ident: 140_CR52 – ident: 140_CR51 – volume: 92 start-page: 454 year: 2016 ident: 140_CR54 publication-title: World Neurosurg doi: 10.1016/j.wneu.2016.05.010 – ident: 140_CR16 doi: 10.1109/SM2C.2017.8071825 – volume: 7 start-page: 21990 year: 2019 ident: 140_CR48 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2898154 – ident: 140_CR8 doi: 10.1109/GLOCOM.2010.5685228 – ident: 140_CR41 doi: 10.1155/2021/6611091 – volume: 4 start-page: 1 issue: 1 year: 2018 ident: 140_CR27 publication-title: Bioelectron Med doi: 10.1186/s42234-018-0015-6 – ident: 140_CR9 doi: 10.1145/2991079.2991094 – ident: 140_CR46 doi: 10.1016/j.asoc.2019.105970 – volume: 38 start-page: 828 issue: 4 year: 2018 ident: 140_CR42 publication-title: Bioprocess Biosyst Eng – ident: 140_CR60 doi: 10.1109/VTS48691.2020.9107582 – ident: 140_CR3 doi: 10.1161/JAHA.119.015139 – volume: 67 start-page: 239 year: 2017 ident: 140_CR29 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.08.065 – volume: 5 start-page: 8869 year: 2017 ident: 140_CR30 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2694446 – ident: 140_CR59 doi: 10.1109/ISCAS.2019.8702493 – volume: 55 start-page: 272 year: 2015 ident: 140_CR6 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2015.04.007 – volume: 1 start-page: 12 issue: 1 year: 2020 ident: 140_CR39 publication-title: Journal of Safety Science and Resilience doi: 10.1016/j.jnlssr.2020.06.007 – ident: 140_CR17 doi: 10.1109/AICAS54282.2022.9869935 – volume: 163 year: 2021 ident: 140_CR34 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113807 – ident: 140_CR50 – volume: 63 start-page: 721 issue: 4 year: 2015 ident: 140_CR19 publication-title: IEEE Trans Biomed Eng – volume: 25 start-page: 35 issue: 1 year: 2020 ident: 140_CR49 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2020.2988449 – volume: 66 start-page: 61 year: 2021 ident: 140_CR4 publication-title: Prog Cardiovasc Dis doi: 10.1016/j.pcad.2021.06.003 – ident: 140_CR26 doi: 10.1126/scitranslmed.aaw4949 – ident: 140_CR14 doi: 10.1155/2020/5057801 – ident: 140_CR36 doi: 10.1109/BIBM.2016.7822620 – ident: 140_CR13 doi: 10.1007/978-981-15-2329-8_22 – volume: 37 start-page: 1030 issue: 6 year: 2020 ident: 140_CR24 publication-title: Diabet Med doi: 10.1111/dme.14252 – volume: 71 start-page: 1 year: 2022 ident: 140_CR35 publication-title: IEEE Trans Instrum Meas – ident: 140_CR18 doi: 10.1109/EMBC.2016.7592043 – volume: 9 start-page: 684 issue: 9 year: 2016 ident: 140_CR15 publication-title: Energies doi: 10.3390/en9090684 – volume: 15 start-page: 842 issue: 4 year: 2021 ident: 140_CR33 publication-title: J Diabetes Sci Technol doi: 10.1177/1932296820922622 – ident: 140_CR47 doi: 10.1016/j.energy.2020.119397 – volume: 12 start-page: 2968 issue: 1 year: 2021 ident: 140_CR57 publication-title: Nat Commun doi: 10.1038/s41467-021-23180-2 – ident: 140_CR25 doi: 10.1109/ICCD56317.2022.00091 – volume: 6 start-page: 14 issue: 9 year: 2018 ident: 140_CR12 publication-title: J Comput Commun doi: 10.4236/jcc.2018.69002 – ident: 140_CR22 doi: 10.1109/IEMBS.2011.6090453 – ident: 140_CR43 doi: 10.1007/978-3-031-45878-1_14 – volume: 13 start-page: 357 issue: 2 year: 2021 ident: 140_CR23 publication-title: Symmetry doi: 10.3390/sym13020357 – volume: 7 start-page: 81542 year: 2019 ident: 140_CR32 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923707 – ident: 140_CR45 doi: 10.1007/s11277-020-07464-2 – ident: 140_CR5 doi: 10.1145/2228360.2228364 – start-page: 1 volume-title: The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems year: 2019 ident: 140_CR56 – ident: 140_CR7 doi: 10.1109/SP.2008.31 – ident: 140_CR2 – ident: 140_CR1 doi: 10.1007/978-1-4614-9434-8_2 – ident: 140_CR20 doi: 10.1007/s00125-021-05391-w – volume: 15 start-page: 403 issue: 6 year: 2018 ident: 140_CR11 publication-title: Expert Rev Med Devices doi: 10.1080/17434440.2018.1483235 – volume: 24 start-page: 603 issue: 2 year: 2019 ident: 140_CR31 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2908488 – volume: 117 start-page: 1130 issue: 5 year: 2013 ident: 140_CR21 publication-title: Anesth Analg doi: 10.1213/ANE.0b013e3182973687 – ident: 140_CR53 |
| SSID | ssib031263793 ssj0002734763 |
| Score | 2.248498 |
| Snippet | Biosignal monitoring using wearable and implantable devices (WIMDs) is driving the advent of highly personalized medicine. However, such devices may suffer... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 12 |
| SubjectTerms | Algorithms Artificial intelligence Biosensors Bladder Circuits and Systems Closed loop systems Closed loops Component reliability Computer Hardware Control systems Control theory Controllers Data acquisition Electronic systems Energy consumption Engineering Error correction & detection Glucose Information Systems Applications (incl.Internet) Machine learning Medical equipment Neural networks Nonlinear control Nonlinear systems Pacemakers Pancreas Patients Physiology Prediction models Predictive control Quality of life Real time Sensors System reliability Systems and Data Security Target acquisition Transplants & implants Urogenital system Wearable computers |
| SummonAdditionalLinks | – databaseName: SpringerLink [Stanislaus State] dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADgwFiMFAO3CBS27RNe4RpE4dpQrw0can6SGBoaqd1IPHvcdpkAwQHOPXQxKpsJ_5U258BTv3Uiblt-9SPmUNdjDgUo1xCXSndmLsSTV6RuA74cBiMRuG1bgorTbW7SUlWN_Wi2U1BB9VNzGhFCkPdVVjDcBeogQ03tw_Gi5jt-Mx43YsmcOHVSDUM9yFlCLh198zPYr9GqCXs_JYprQJQv_m_T9-GLQ04yUXtITuwIvIWNM0wB6LPdgs2PzET7sJjL39WTBz5E0GESFThck3o_U4KSbqTohQZHRTFlOhMD9HU50T92MX18YSq7hJyOS5UiQguUFPXVO_7Htz3e3fdK6rHMNBUcfVQnggnsVyWhPjI7CDhcYCGzbxQWJ4MM575kvk-tzzBuJSWLQUPUuHwOGU8CRjbh0Ze5OIASBJndupluNWK3QDlIV6RiJgFs1Ins0Ubzozqo2nNthEteJUrJUaoxKhSYuS2oWOsE-mTV0YMMQ7eM5xbbTg31li-_l3a4d-WH8GGg_imLkfrQGM-exXHsJ6-zcfl7KTyyA_oDda8 priority: 102 providerName: Springer Nature |
| Title | Enhancing the Reliability of Closed-Loop Medical Systems with Real-Time Biosignal Modeling |
| URI | https://link.springer.com/article/10.1007/s41635-023-00140-4 https://www.proquest.com/docview/3081510770 |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2509-3436 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002734763 issn: 2509-3428 databaseCode: P5Z dateStart: 20170301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2509-3436 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002734763 issn: 2509-3428 databaseCode: K7- dateStart: 20170301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2509-3436 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002734763 issn: 2509-3428 databaseCode: M7S dateStart: 20170301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 2509-3436 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002734763 issn: 2509-3428 databaseCode: BENPR dateStart: 20170301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Standard Collection customDbUrl: eissn: 2509-3436 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002734763 issn: 2509-3428 databaseCode: RSV dateStart: 20170301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7o9KAH50-czpGDNw22Tdu0J3EyEZQx_IV4KW2T6GS006ngf-9LmjoV9OIlPTQNNN9L3kfy3vcAdsPcS7nrhjRMmUd99DgUvVxGfaX8lPsKITcirue8349ub-OBPXCb2LDKek80G7Uoc31GfsDQd6H9cO4cjp-orhqlb1dtCY1ZmNMqCa4J3bus7Ym5Xshq-3u0Ui7cFFdDxx9ThtTb5tGYbDrNTXS6MqNGdYb6333VlID-uDM1ruik-d-fWIYlS0LJUWU1KzAji1Vo1gUeiF3vq7D4Ra1wDe56xYNW5yjuCbJGooOZK5Hvd1IqcjwqJ1LQ87IcE3v7Q6wcOtGHvdg_HVGdcUK6w1KHjWAHXYlN58Ovw_VJ7-r4lNrSDDTX-j2UZ9LLHJ9lMT6EG2U8jRBsEcTSCVQsuAgVC0PuBJJxpRxXSR7l0uNpzngWMbYBjaIs5CaQLBVuHgj81En9CMdDDqOQRUvm5J5wZQv2ahCScaXAkXxqLRvIEoQsMZAlfgva9cwndjVOkum0t2C_xm76-vfRtv4ebRsWPOQ4VUhaGxovz69yB-bzt5fh5LkDc91ef3DRgdkzTjvGMrEdBHfYXlzefADus-VP |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hWolyKAWKWB6tD-UEFontjZNDhYCCQLtdcQAJcQlJbPMQSpbdBcSf6m9k7MRsqURvHDjlEMdKMp9nPj_mG4AfUcEyGYYRjTLOqMCIQzHK5VQYIzIpDJrcibh2Za8Xn54mRxPwx-fC2GOV3ic6R62qwq6Rb3KMXYgfKYOt_i21VaPs7qovoVHDoqMfH3DKNvx5-Avtu8bY_t7x7gFtqgrQwkrPUJlrlgeC5wleVBjnMovxPVU70UHbJEqqyPAokkFbc2lMEBot40IzmRVc5rFdAEWX_0HwWNpx1ZHU45eHLOIe79eNdIx0xdyQaCSUI9Vv8nZc9p7lQjY9mlOnckPFy9g4Jrz_7NG60Lc_895-2hf43JBssl2PilmY0OUczPgCFqTxZ3Mw_Zca4zyc7ZWXVn2kvCDIiok9rF2LmD-SypDdm2qoFe1WVZ80u1ukkXsndjEb22c31GbUkJ2ryh6LwQa20pzN9_8KJ2_yvQswWValXgSSZyos2gofDTIRY3_I0QzOEjQPCqZC3YJ1b_S0XyuMpM9a0g4iKUIkdRBJRQtWvKXTxtsM07GZW7DhsTK-_XpvS__v7TtMHRz_7qbdw15nGT4x5HP18bsVmBwN7vQqfCzuR1fDwTc3DgicvzWGngASsD0S |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20iujBalWsVt2DN12aZLfZ5Ki1RbGUgh8ULyHJ7mpFkmKr4L93Nh9aRQ_iKYfsLmRnNvOSmfcG4NCNnVDYtkvdkDmUY8ShGOUiyrXmoeAaTZ6JuPZEv-8Nh_5ghsWfVbuXKcmc02BUmpJpcyx184P4ZmCEYRYzmgnEUD4PC9wU0pvv9avb0qOY7bis9MDHQsxFZO3VMPT7lCH4Lpg0Py_7NVp9QtBvWdMsGHWr_3-MNVgtgCg5yT1nHeZUUoNq2eSBFGe-BiszioUbcNdJHoxCR3JPEDkSU9CcC32_kVST9lM6UZL20nRMigwQKSTRifnhi-PDJ2pYJ-R0lJrSERxgurEZTvwm3HQ71-1zWrRnoLHR8KEiUk5kcRb5eJG2F4nQQ4PLlq-slvalkK5mriuslmJCa8vWSnixckQYMxF5jG1BJUkTtQ0kCqUdtyROtULu4XqIYzQiacWs2JG2qsNRaYZgnKtwBB96y9kmBriJQbaJAa9Do7RUUJzIScAQ--D7RwirDselZT5v_77azt-GH8DS4Kwb9C76l7uw7CAEyivWGlCZPr-oPViMX6ejyfN-5qjv5wLihA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+Reliability+of+Closed-Loop+Medical+Systems+with+Real-Time+Biosignal+Modeling&rft.jtitle=Journal+of+hardware+and+systems+security&rft.au=Mahmud%2C+Shakil&rft.au=Zareen%2C+Farhath&rft.au=Olney%2C+Brooks&rft.au=Karam%2C+Robert&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=2509-3428&rft.eissn=2509-3436&rft.volume=8&rft.issue=1&rft.spage=12&rft.epage=24&rft_id=info:doi/10.1007%2Fs41635-023-00140-4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2509-3428&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2509-3428&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2509-3428&client=summon |