Enhancing the Reliability of Closed-Loop Medical Systems with Real-Time Biosignal Modeling

Biosignal monitoring using wearable and implantable devices (WIMDs) is driving the advent of highly personalized medicine. However, such devices may suffer from the same faulty behavior as any electronic system and may furthermore be targeted by malicious actors seeking to do harm. Closed-loop medic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of hardware and systems security Ročník 8; číslo 1; s. 12 - 24
Hlavní autori: Mahmud, Shakil, Zareen, Farhath, Olney, Brooks, Karam, Robert
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.03.2024
Springer Nature B.V
Predmet:
ISSN:2509-3428, 2509-3436
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Biosignal monitoring using wearable and implantable devices (WIMDs) is driving the advent of highly personalized medicine. However, such devices may suffer from the same faulty behavior as any electronic system and may furthermore be targeted by malicious actors seeking to do harm. Closed-loop medical control systems, which monitor biosignals for data acquisition, contain and interact with many other components, any of which may be maliciously targeted or suffer a naturally occurring fault. Any measure aiming to improve the security and reliability of these systems must also consider the interplay between each component. In this paper, we explore the vulnerability of closed-loop medical control systems considering both individual system components and the system as a whole and utilize a predictive model based on a nonlinear autoregressive neural network (NARNN) to detect and correct faulty behavior in real time. We present a case study using a human bladder pressure dataset from nine subjects undergoing acute urodynamics testing. Signals are corrupted to simulate faulty sensor readings or malicious attacks and then processed using a custom bladder event detection algorithm designed for use in a closed-loop neuromodulation system. Using the proposed technique, 100% of faulty measurements were detected and corrected, so the control algorithm induced no additional false positives. We present the circuit-level implementation of the NARNN suitable for on-chip machine learning (ML)/artificial intelligence (AI) applications. We synthesized and generated the layout of the NARNN architecture in SAED 32  nm technology. The implementation requires an area of 0.022 m m 2 and a total power consumption of 0.31  mW , which is suitable for WIMDs.
AbstractList Biosignal monitoring using wearable and implantable devices (WIMDs) is driving the advent of highly personalized medicine. However, such devices may suffer from the same faulty behavior as any electronic system and may furthermore be targeted by malicious actors seeking to do harm. Closed-loop medical control systems, which monitor biosignals for data acquisition, contain and interact with many other components, any of which may be maliciously targeted or suffer a naturally occurring fault. Any measure aiming to improve the security and reliability of these systems must also consider the interplay between each component. In this paper, we explore the vulnerability of closed-loop medical control systems considering both individual system components and the system as a whole and utilize a predictive model based on a nonlinear autoregressive neural network (NARNN) to detect and correct faulty behavior in real time. We present a case study using a human bladder pressure dataset from nine subjects undergoing acute urodynamics testing. Signals are corrupted to simulate faulty sensor readings or malicious attacks and then processed using a custom bladder event detection algorithm designed for use in a closed-loop neuromodulation system. Using the proposed technique, 100% of faulty measurements were detected and corrected, so the control algorithm induced no additional false positives. We present the circuit-level implementation of the NARNN suitable for on-chip machine learning (ML)/artificial intelligence (AI) applications. We synthesized and generated the layout of the NARNN architecture in SAED 32 nm technology. The implementation requires an area of 0.022mm2 and a total power consumption of 0.31 mW, which is suitable for WIMDs.
Biosignal monitoring using wearable and implantable devices (WIMDs) is driving the advent of highly personalized medicine. However, such devices may suffer from the same faulty behavior as any electronic system and may furthermore be targeted by malicious actors seeking to do harm. Closed-loop medical control systems, which monitor biosignals for data acquisition, contain and interact with many other components, any of which may be maliciously targeted or suffer a naturally occurring fault. Any measure aiming to improve the security and reliability of these systems must also consider the interplay between each component. In this paper, we explore the vulnerability of closed-loop medical control systems considering both individual system components and the system as a whole and utilize a predictive model based on a nonlinear autoregressive neural network (NARNN) to detect and correct faulty behavior in real time. We present a case study using a human bladder pressure dataset from nine subjects undergoing acute urodynamics testing. Signals are corrupted to simulate faulty sensor readings or malicious attacks and then processed using a custom bladder event detection algorithm designed for use in a closed-loop neuromodulation system. Using the proposed technique, 100% of faulty measurements were detected and corrected, so the control algorithm induced no additional false positives. We present the circuit-level implementation of the NARNN suitable for on-chip machine learning (ML)/artificial intelligence (AI) applications. We synthesized and generated the layout of the NARNN architecture in SAED 32  nm technology. The implementation requires an area of 0.022 m m 2 and a total power consumption of 0.31  mW , which is suitable for WIMDs.
Author Mahmud, Shakil
Zareen, Farhath
Karam, Robert
Olney, Brooks
Author_xml – sequence: 1
  givenname: Shakil
  surname: Mahmud
  fullname: Mahmud, Shakil
  email: shakilmahmud@usf.edu
  organization: Department of Computer Science and Engineering, University of South Florida
– sequence: 2
  givenname: Farhath
  surname: Zareen
  fullname: Zareen, Farhath
  organization: Department of Computer Science and Engineering, University of South Florida
– sequence: 3
  givenname: Brooks
  surname: Olney
  fullname: Olney, Brooks
  organization: Department of Computer Science and Engineering, University of South Florida
– sequence: 4
  givenname: Robert
  surname: Karam
  fullname: Karam, Robert
  organization: Department of Computer Science and Engineering, University of South Florida
BookMark eNp9kD1PwzAURS1UJErpH2CyxGx4tpM4GaEqH1IrJCgLi-Ukz61RGpc4Feq_xxAEG9N9w7lXT-eUjFrfIiHnHC45gLoKCc9kykBIBsATYMkRGYsUCiYTmY1-b5GfkGkIrgTJRSZVIcfkdd5uTFu5dk37DdInbJwpXeP6A_WWzhofsGYL73d0ibWrTEOfD6HHbaAfrt9E3jRs5bZIb5wPbt1GYOnruNKuz8ixNU3A6U9OyMvtfDW7Z4vHu4fZ9YJVnKcJUyWKEhJZFjFqnpfK5EaKOi0QUlvUqs6szDIFKUplLXCLKq9QKFNJVeZSTsjFsLvr_PseQ6_f_L6LnwQtIecpB6UgUmKgqs6H0KHVu85tTXfQHPSXRj1o1FGj_taok1iSQylEuF1j9zf9T-sTbqd2OQ
Cites_doi 10.1001/jama.280.11.951
10.1109/MWSCAS54063.2022.9859332
10.1109/SP.2014.40
10.1145/3394885.3431639
10.1145/3176258.3176310
10.1049/iet-net.2017.0110
10.1017/S0950268816003216
10.1016/j.wneu.2016.05.010
10.1109/SM2C.2017.8071825
10.1109/ACCESS.2019.2898154
10.1109/GLOCOM.2010.5685228
10.1155/2021/6611091
10.1186/s42234-018-0015-6
10.1145/2991079.2991094
10.1016/j.asoc.2019.105970
10.1109/VTS48691.2020.9107582
10.1161/JAHA.119.015139
10.1016/j.eswa.2016.08.065
10.1109/ACCESS.2017.2694446
10.1109/ISCAS.2019.8702493
10.1016/j.jbi.2015.04.007
10.1016/j.jnlssr.2020.06.007
10.1109/AICAS54282.2022.9869935
10.1016/j.eswa.2020.113807
10.1109/JBHI.2020.2988449
10.1016/j.pcad.2021.06.003
10.1126/scitranslmed.aaw4949
10.1155/2020/5057801
10.1109/BIBM.2016.7822620
10.1007/978-981-15-2329-8_22
10.1111/dme.14252
10.1109/EMBC.2016.7592043
10.3390/en9090684
10.1177/1932296820922622
10.1016/j.energy.2020.119397
10.1038/s41467-021-23180-2
10.1109/ICCD56317.2022.00091
10.4236/jcc.2018.69002
10.1109/IEMBS.2011.6090453
10.1007/978-3-031-45878-1_14
10.3390/sym13020357
10.1109/ACCESS.2019.2923707
10.1007/s11277-020-07464-2
10.1145/2228360.2228364
10.1109/SP.2008.31
10.1007/978-1-4614-9434-8_2
10.1007/s00125-021-05391-w
10.1080/17434440.2018.1483235
10.1109/JBHI.2019.2908488
10.1213/ANE.0b013e3182973687
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s41635-023-00140-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central (subscription)
Technology collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2509-3436
EndPage 24
ExternalDocumentID 10_1007_s41635_023_00140_4
GroupedDBID -EM
0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYUE
ABAKF
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AGDGC
AGMZJ
AGQEE
AGRTI
AHKAY
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ARAPS
AXYYD
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
H13
HCIFZ
IKXTQ
IWAJR
J-C
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9J
PT4
PTHSS
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
Z7R
Z7X
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c1154-7be2b043b92b0d18b7a8a32d59e05f9d7d6f366705e37ff01fe78ce27ac37b833
IEDL.DBID M7S
ISSN 2509-3428
IngestDate Wed Nov 05 03:34:03 EST 2025
Sat Nov 29 06:03:13 EST 2025
Fri Feb 21 02:39:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Biosignal
Closed-loop system
Neural network
Implantable medical device
Nonlinear autoregressive
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1154-7be2b043b92b0d18b7a8a32d59e05f9d7d6f366705e37ff01fe78ce27ac37b833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3081510770
PQPubID 6623297
PageCount 13
ParticipantIDs proquest_journals_3081510770
crossref_primary_10_1007_s41635_023_00140_4
springer_journals_10_1007_s41635_023_00140_4
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Gainesville
PublicationTitle Journal of hardware and systems security
PublicationTitleAbbrev J Hardw Syst Secur
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Boughton CK, Hovorka R (2019) Advances in artificial pancreas systems. Sci Transl Med 11(484)
BahramiMForouzanfarMSleep apnea detection from single-lead ECG: a comprehensive analysis of machine learning and deep learning algorithmsIEEE Trans Instrum Meas202271111
Duan J, Zuo H, Bai Y, Duan J, Chang M, Chen B (2021) Short-term wind speed forecasting using recurrent neural networks with error correction. Energy 217:119397
RaturiRSargsyanHA nonlinear autoregressive scheme for time series prediction via artificial neural networksJ Comput Commun201869142310.4236/jcc.2018.69002
Olney B, Mahmud S, Karam R (2022) Efficient nonlinear autoregressive neural network architecture for real-time biomedical applications. In: 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 411–414. IEEE
RahmanMSKhalilIYiXReversible biosignal steganography approach for authenticating biosignals using extended binary Golay codeIEEE J Biomed Health Inform2020251354610.1109/JBHI.2020.2988449
Eberle W, Penders J, Yazicioglu RF (2011) Closing the loop for deep brain stimulation implants enables personalized healthcare for Parkinson’s disease patients. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1556–1558. IEEE
Olney B, Mahmud S, Zaman MA, Karam R (2022) An EDA framework for design space exploration of on-chip AI in bioimplantable applications. In: 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1–4. IEEE
KovatchevBAutomated closed-loop control of diabetes: the artificial pancreasBioelectron Med20184111210.1186/s42234-018-0015-6
FDA: technical considerations for medical devices with physiologic closed-loop control technology (2021) https://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-medical-devices-physiologic-closed-loop-control-technology
RuizLGBCuéllarMPCalvo-FloresMDJiménezMDCPAn application of non-linear autoregressive neural networks to predict energy consumption in public buildingsEnergies20169968410.3390/en9090684
KaramRBourbeauDMajerusSMakoveyIGoldmanHBDamaserMSBhuniaSReal-time classification of bladder events for effective diagnosis and treatment of urinary incontinenceIEEE Trans Biomed Eng2015634721729
MiddourTGChenJHEl-ChamiMFLeadless pacemakers: a review of current data and future directionsProg Cardiovasc Dis202166616910.1016/j.pcad.2021.06.003
Implantable medical devices market size, share, report 2022-2030. https://www.biospace.com/article/implantable-medical-devices-market-size-share-report-2022-2030
VoelkerRInternational group seeks to dispel incontinence “Taboo”JAMA19982801195195310.1001/jama.280.11.951
Mahmud S, Zareen F, Olney B, Karam R et al (2022) Trojan resilience in implantable and wearable medical devices with virtual biosensing. In: 2022 IEEE 40th International Conference on Computer Design (ICCD), pp. 577–584. IEEE
DumontGAAnserminoJMClosed-loop control of anesthesia: a primer for anesthesiologistsAnesth Analg201311751130113810.1213/ANE.0b013e3182973687
PycroftLBoccardSGOwenSLSteinJFFitzgeraldJJGreenALAzizTZBrainjacking: implant security issues in invasive neuromodulationWorld Neurosurg20169245446210.1016/j.wneu.2016.05.010
Khan W, Muntimadugu E, Jaffe M, Domb AJ (2014) Implantable medical devices. In: Focal controlled drug delivery, pp. 33–59. Springer
HerreroRSt-PierreCDynamic forward error correction in wireless real-time internet of things networksIET Networks20176621822310.1049/iet-net.2017.0110
Xu Q, Arafin MT, Qu G (2021) Security of neural networks from hardware perspective: a survey and beyond. In: Proceedings of the 26th Asia and South Pacific Design Automation Conference, pp. 449–454
GavinHPThe Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems2019Duke University ppDepartment of Civil and Environmental Engineering119
WangKDengCLiJZhangYLiXWuMHybrid methodology for tuberculosis incidence time-series forecasting based on ARIMA and a NAR neural networkEpidemiol Infect201714561118112910.1017/S0950268816003216
ChenMHaoYHwangKWangLWangLDisease prediction by machine learning over big data from healthcare communitiesIEEE Access201758869887910.1109/ACCESS.2017.2694446
IqbalNAhmadSKimDHHealth monitoring system for elderly patients using intelligent task mapping mechanism in closed loop healthcare environmentSymmetry202113235710.3390/sym13020357
Hamdi T, Ali JB, Fnaiech N, Di Costanzo V, Fnaiech F, Moreau E, Ginoux JM (2017) Artificial neural network for blood glucose level prediction. In: 2017 International Conference on Smart, Monitored and Controlled Cities (SM2C), pp. 91–95. IEEE
Liu Z, Ye J, Hu X, Li H, Li X, Hu Y (2020) Sequence triggered hardware Trojan in neural network accelerator. In: 2020 IEEE 38th VLSI Test Symposium (VTS), pp. 1–6. IEEE
CamaraCPeris-LopezPTapiadorJESecurity and privacy issues in implantable medical devices: a comprehensive surveyJ Biomed Inform20155527228910.1016/j.jbi.2015.04.007
AbdarMZomorodi-MoghadamMDasRTingIHPerformance analysis of classification algorithms on early detection of liver diseaseExpert Syst Appl20176723925110.1016/j.eswa.2016.08.065
GhazalyNMAbdel-FattahMAEl-AzizANovel coronavirus forecasting model using nonlinear autoregressive artificial neural networkInt J Adv Sci Technol202029519
Merchant FM, Levy WC, Kramer DB (2020) Time to shock the system: moving beyond the current paradigm for primary prevention implantable cardioverter-defibrillator use. J Am Heart Assoc 9(5):e015139
Rushanan M, Rubin AD, Kune DF, Swanson CM (2014) SoK: security and privacy in implantable medical devices and body area networks. In: 2014 IEEE symposium on security and privacy, pp. 524–539. IEEE
Hei X, Du X, Wu J, Hu F (2010) Defending resource depletion attacks on implantable medical devices. In: 2010 IEEE global telecommunications conference GLOBECOM 2010, pp. 1–5. IEEE
LawtonJKimbellBRankinDAshcroftNVargheseLAllenJBoughtonCCampbellFRandellTBesserRHealth professionals’ views about who would benefit from using a closed-loop system: a qualitative studyDiabet Med20203761030103710.1111/dme.14252
AliJBHamdiTFnaiechNDi CostanzoVFnaiechFGinouxJMContinuous blood glucose level prediction of type 1 diabetes based on artificial neural networkBioprocess Biosyst Eng2018384828840
Karam R, Bhunia S, Majerus S, Brose SW, Damaser MS, Bourbeau D (2016) Real-time, autonomous bladder event classification and closed-loop control from single-channel pressure data. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5789–5792. IEEE
Rakovic V, Adamovski R, Risteski A, Gavrilovska L (2020) Improving energy efficiency and reliability in WuR-based IoT systems: an error correction approach. Wirel Pers Commun pp. 1–12
Boughton CK, Hovorka R (2021) New closed-loop insulin systems. Diabetologia pp. 1–9
LiKDanielsJLiuCHerreroPGeorgiouPConvolutional recurrent neural networks for glucose predictionIEEE J Biomed Health Inform201924260361310.1109/JBHI.2019.2908488
Halperin D, Heydt-Benjamin TS, Ransford B, Clark SS, Defend B, Morgan W, Fu K, Kohno T, Maisel WH (2008) Pacemakers and implantable cardiac defibrillators: software radio attacks and zero-power defenses. In: 2008 IEEE Symposium on Security and Privacy (sp 2008), pp. 129–142. IEEE
Wang A, Wang J, Lin H, Zhang J, Yang Z, Xu K (2016) Biomedical event extraction based on distributed representation and deep learning. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 775. IEEE
YadavSSJadhavSMDetection of common risk factors for diagnosis of cardiac arrhythmia using machine learning algorithmExpert Syst Appl202116310.1016/j.eswa.2020.113807
Asad M, Qamar U, Abbas M (2021) Blood glucose level prediction of diabetic type 1 patients using nonlinear autoregressive neural networks. J Healthc Eng 2021
Burleson W, Clark SS, Ransford B, Fu K (2012) Design challenges for secure implantable medical devices. In: DAC Design Automation Conference 2012, pp. 12–17. IEEE
JeonKKimJRyuJJYooSJSongCYangMKJeongDSKimGHSelf-rectifying resistive memory in passive crossbar arraysNat Commun2021121296810.1038/s41467-021-23180-2
HiraiYMatsuokaTTaniSIsamiSTatsumiKUedaMKamataTA biomedical sensor system with stochastic A/D conversion and error correction by machine learningIEEE Access20197219902200110.1109/ACCESS.2019.2898154
Consumers (medical devices): How are medical devices classified. Food and Drug Administration. https://www.fda.gov/medical-devices/resources-you-medical-devices/consumers-medical-devices#How_are_Medical_Devices_Classified
PycroftLAzizTZSecurity of implantable medical devices with wireless connections: the dangers of cyber-attacksExpert Rev Med Devices201815640340610.1080/17434440.2018.1483235
Marin E, Singelée D, Yang B, Volski V, Vandenbosch GA, Nuttin B, Preneel B (2018) Securing wireless neurostimulators. In: Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy, pp. 287–298
Clements J, Lao Y (2019) Hardware Trojan design on neural networks. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. https://doi.org/10.1109/ISCAS.2019.8702493
DaveDDeSalvoDJHaridasBMcKaySShenoyAKohCJLawleyMErraguntlaMFeature-based machine learning model for real-time hypoglycemia predictionJ Diabetes Sci Technol202115484285510.1177/1932296820922622
KhanFMGuptaRARIMA and NAR based prediction model for time series analysis of COVID-19 cases in IndiaJournal of Safety Science and Resilience202011121810.1016/j.jnlssr.2020.06.007
Mahmud S, Keller M, Ahmed S, Karam R (2023) FAMID: false alarms mitigation in IoMT devices. In: IFIP International Internet of Things Conference, pp. 199–217. Springer
de Oliveira JFL, Pacífico LDS, de Mattos Neto PSG, Barreiros, EFS, de Oliveira Rodrigues CM, de Almeida Filho AT (2020) A hybrid optimized error correction system for time series forecasting. Appl Soft Comput 87:105970
Benrhmach G, Namir K, Namir A, Bouyaghroumni J (2020) Nonlinear autoregressive neural ne
140_CR36
M Abdar (140_CR29) 2017; 67
140_CR37
L Pycroft (140_CR54) 2016; 92
K Jeon (140_CR57) 2021; 12
GA Dumont (140_CR21) 2013; 117
HP Gavin (140_CR56) 2019
K Li (140_CR31) 2019; 24
K Wang (140_CR40) 2017; 145
140_CR41
D Dave (140_CR33) 2021; 15
140_CR22
C Camara (140_CR6) 2015; 55
M Bahrami (140_CR35) 2022; 71
140_CR25
140_CR26
B Kovatchev (140_CR27) 2018; 4
M Chen (140_CR30) 2017; 5
LGB Ruiz (140_CR15) 2016; 9
NM Ghazaly (140_CR38) 2020; 29
MS Rahman (140_CR49) 2020; 25
140_CR10
140_CR55
140_CR13
140_CR14
140_CR58
140_CR9
140_CR59
140_CR16
Y Hirai (140_CR48) 2019; 7
140_CR17
140_CR18
R Herrero (140_CR44) 2017; 6
140_CR5
140_CR8
140_CR7
140_CR2
140_CR1
JB Ali (140_CR42) 2018; 38
140_CR3
N Iqbal (140_CR23) 2021; 13
S Mohan (140_CR32) 2019; 7
FM Khan (140_CR39) 2020; 1
140_CR60
R Karam (140_CR19) 2015; 63
140_CR20
140_CR43
140_CR45
140_CR46
L Pycroft (140_CR11) 2018; 15
140_CR47
J Lawton (140_CR24) 2020; 37
R Voelker (140_CR28) 1998; 280
TG Middour (140_CR4) 2021; 66
R Raturi (140_CR12) 2018; 6
SS Yadav (140_CR34) 2021; 163
140_CR50
140_CR51
140_CR52
140_CR53
References_xml – reference: RuizLGBCuéllarMPCalvo-FloresMDJiménezMDCPAn application of non-linear autoregressive neural networks to predict energy consumption in public buildingsEnergies20169968410.3390/en9090684
– reference: Benrhmach G, Namir K, Namir A, Bouyaghroumni J (2020) Nonlinear autoregressive neural network and extended Kalman filters for prediction of financial time series. J Appl Math 2020
– reference: MiddourTGChenJHEl-ChamiMFLeadless pacemakers: a review of current data and future directionsProg Cardiovasc Dis202166616910.1016/j.pcad.2021.06.003
– reference: CamaraCPeris-LopezPTapiadorJESecurity and privacy issues in implantable medical devices: a comprehensive surveyJ Biomed Inform20155527228910.1016/j.jbi.2015.04.007
– reference: LiKDanielsJLiuCHerreroPGeorgiouPConvolutional recurrent neural networks for glucose predictionIEEE J Biomed Health Inform201924260361310.1109/JBHI.2019.2908488
– reference: Liu Z, Ye J, Hu X, Li H, Li X, Hu Y (2020) Sequence triggered hardware Trojan in neural network accelerator. In: 2020 IEEE 38th VLSI Test Symposium (VTS), pp. 1–6. IEEE
– reference: PycroftLAzizTZSecurity of implantable medical devices with wireless connections: the dangers of cyber-attacksExpert Rev Med Devices201815640340610.1080/17434440.2018.1483235
– reference: Olney B, Mahmud S, Karam R (2022) Efficient nonlinear autoregressive neural network architecture for real-time biomedical applications. In: 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 411–414. IEEE
– reference: Marin E, Singelée D, Garcia FD, Chothia T, Willems R, Preneel B (2016) On the (in) security of the latest generation implantable cardiac defibrillators and how to secure them. In: Proceedings of the 32nd annual conference on computer security applications, pp. 226–236
– reference: Asad M, Qamar U, Abbas M (2021) Blood glucose level prediction of diabetic type 1 patients using nonlinear autoregressive neural networks. J Healthc Eng 2021
– reference: DaveDDeSalvoDJHaridasBMcKaySShenoyAKohCJLawleyMErraguntlaMFeature-based machine learning model for real-time hypoglycemia predictionJ Diabetes Sci Technol202115484285510.1177/1932296820922622
– reference: Mahmud S, Keller M, Ahmed S, Karam R (2023) FAMID: false alarms mitigation in IoMT devices. In: IFIP International Internet of Things Conference, pp. 199–217. Springer
– reference: JeonKKimJRyuJJYooSJSongCYangMKJeongDSKimGHSelf-rectifying resistive memory in passive crossbar arraysNat Commun2021121296810.1038/s41467-021-23180-2
– reference: Rushanan M, Rubin AD, Kune DF, Swanson CM (2014) SoK: security and privacy in implantable medical devices and body area networks. In: 2014 IEEE symposium on security and privacy, pp. 524–539. IEEE
– reference: Food U, Administration D et al (2017) Cfr-code of federal regulations title 21
– reference: HerreroRSt-PierreCDynamic forward error correction in wireless real-time internet of things networksIET Networks20176621822310.1049/iet-net.2017.0110
– reference: de Oliveira JFL, Pacífico LDS, de Mattos Neto PSG, Barreiros, EFS, de Oliveira Rodrigues CM, de Almeida Filho AT (2020) A hybrid optimized error correction system for time series forecasting. Appl Soft Comput 87:105970
– reference: KovatchevBAutomated closed-loop control of diabetes: the artificial pancreasBioelectron Med20184111210.1186/s42234-018-0015-6
– reference: HiraiYMatsuokaTTaniSIsamiSTatsumiKUedaMKamataTA biomedical sensor system with stochastic A/D conversion and error correction by machine learningIEEE Access20197219902200110.1109/ACCESS.2019.2898154
– reference: Khan W, Muntimadugu E, Jaffe M, Domb AJ (2014) Implantable medical devices. In: Focal controlled drug delivery, pp. 33–59. Springer
– reference: RaturiRSargsyanHA nonlinear autoregressive scheme for time series prediction via artificial neural networksJ Comput Commun201869142310.4236/jcc.2018.69002
– reference: Xu Q, Arafin MT, Qu G (2021) Security of neural networks from hardware perspective: a survey and beyond. In: Proceedings of the 26th Asia and South Pacific Design Automation Conference, pp. 449–454
– reference: KaramRBourbeauDMajerusSMakoveyIGoldmanHBDamaserMSBhuniaSReal-time classification of bladder events for effective diagnosis and treatment of urinary incontinenceIEEE Trans Biomed Eng2015634721729
– reference: Clements J, Lao Y (2019) Hardware Trojan design on neural networks. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. https://doi.org/10.1109/ISCAS.2019.8702493
– reference: Mahmud S, Zareen F, Olney B, Karam R et al (2022) Trojan resilience in implantable and wearable medical devices with virtual biosensing. In: 2022 IEEE 40th International Conference on Computer Design (ICCD), pp. 577–584. IEEE
– reference: AliJBHamdiTFnaiechNDi CostanzoVFnaiechFGinouxJMContinuous blood glucose level prediction of type 1 diabetes based on artificial neural networkBioprocess Biosyst Eng2018384828840
– reference: Li C, Raghunathan A, Jha NK (2011) Hijacking an insulin pump: security attacks and defenses for a diabetes therapy system. In: 2011 IEEE 13th International Conference on e-Health Networking, Applications and Services, pp. 150–156. IEEE
– reference: YadavSSJadhavSMDetection of common risk factors for diagnosis of cardiac arrhythmia using machine learning algorithmExpert Syst Appl202116310.1016/j.eswa.2020.113807
– reference: GhazalyNMAbdel-FattahMAEl-AzizANovel coronavirus forecasting model using nonlinear autoregressive artificial neural networkInt J Adv Sci Technol202029519
– reference: Karam R, Bhunia S, Majerus S, Brose SW, Damaser MS, Bourbeau D (2016) Real-time, autonomous bladder event classification and closed-loop control from single-channel pressure data. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5789–5792. IEEE
– reference: Duan J, Zuo H, Bai Y, Duan J, Chang M, Chen B (2021) Short-term wind speed forecasting using recurrent neural networks with error correction. Energy 217:119397
– reference: IqbalNAhmadSKimDHHealth monitoring system for elderly patients using intelligent task mapping mechanism in closed loop healthcare environmentSymmetry202113235710.3390/sym13020357
– reference: KhanFMGuptaRARIMA and NAR based prediction model for time series analysis of COVID-19 cases in IndiaJournal of Safety Science and Resilience202011121810.1016/j.jnlssr.2020.06.007
– reference: Halperin D, Heydt-Benjamin TS, Ransford B, Clark SS, Defend B, Morgan W, Fu K, Kohno T, Maisel WH (2008) Pacemakers and implantable cardiac defibrillators: software radio attacks and zero-power defenses. In: 2008 IEEE Symposium on Security and Privacy (sp 2008), pp. 129–142. IEEE
– reference: Boughton CK, Hovorka R (2021) New closed-loop insulin systems. Diabetologia pp. 1–9
– reference: Boughton CK, Hovorka R (2019) Advances in artificial pancreas systems. Sci Transl Med 11(484)
– reference: AbdarMZomorodi-MoghadamMDasRTingIHPerformance analysis of classification algorithms on early detection of liver diseaseExpert Syst Appl20176723925110.1016/j.eswa.2016.08.065
– reference: Burleson W, Clark SS, Ransford B, Fu K (2012) Design challenges for secure implantable medical devices. In: DAC Design Automation Conference 2012, pp. 12–17. IEEE
– reference: DumontGAAnserminoJMClosed-loop control of anesthesia: a primer for anesthesiologistsAnesth Analg201311751130113810.1213/ANE.0b013e3182973687
– reference: MohanSThirumalaiCSrivastavaGEffective heart disease prediction using hybrid machine learning techniquesIEEE Access20197815428155410.1109/ACCESS.2019.2923707
– reference: VoelkerRInternational group seeks to dispel incontinence “Taboo”JAMA19982801195195310.1001/jama.280.11.951
– reference: ChenMHaoYHwangKWangLWangLDisease prediction by machine learning over big data from healthcare communitiesIEEE Access201758869887910.1109/ACCESS.2017.2694446
– reference: WangKDengCLiJZhangYLiXWuMHybrid methodology for tuberculosis incidence time-series forecasting based on ARIMA and a NAR neural networkEpidemiol Infect201714561118112910.1017/S0950268816003216
– reference: LawtonJKimbellBRankinDAshcroftNVargheseLAllenJBoughtonCCampbellFRandellTBesserRHealth professionals’ views about who would benefit from using a closed-loop system: a qualitative studyDiabet Med20203761030103710.1111/dme.14252
– reference: Hamdi T, Ali JB, Fnaiech N, Di Costanzo V, Fnaiech F, Moreau E, Ginoux JM (2017) Artificial neural network for blood glucose level prediction. In: 2017 International Conference on Smart, Monitored and Controlled Cities (SM2C), pp. 91–95. IEEE
– reference: Olney B, Mahmud S, Zaman MA, Karam R (2022) An EDA framework for design space exploration of on-chip AI in bioimplantable applications. In: 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1–4. IEEE
– reference: FDA: technical considerations for medical devices with physiologic closed-loop control technology (2021) https://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-medical-devices-physiologic-closed-loop-control-technology
– reference: GavinHPThe Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems2019Duke University ppDepartment of Civil and Environmental Engineering119
– reference: Implantable medical devices market size, share, report 2022-2030. https://www.biospace.com/article/implantable-medical-devices-market-size-share-report-2022-2030/
– reference: Le VM, Pham BT, Le TT, Ly HB, Le LM (2020) Daily rainfall prediction using nonlinear autoregressive neural network. Micro-Electronics and Telecommunication Engineering pp. 213–221
– reference: Consumers (medical devices): How are medical devices classified. Food and Drug Administration. https://www.fda.gov/medical-devices/resources-you-medical-devices/consumers-medical-devices#How_are_Medical_Devices_Classified_
– reference: BahramiMForouzanfarMSleep apnea detection from single-lead ECG: a comprehensive analysis of machine learning and deep learning algorithmsIEEE Trans Instrum Meas202271111
– reference: Merchant FM, Levy WC, Kramer DB (2020) Time to shock the system: moving beyond the current paradigm for primary prevention implantable cardioverter-defibrillator use. J Am Heart Assoc 9(5):e015139
– reference: Marin E, Singelée D, Yang B, Volski V, Vandenbosch GA, Nuttin B, Preneel B (2018) Securing wireless neurostimulators. In: Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy, pp. 287–298
– reference: Hei X, Du X, Wu J, Hu F (2010) Defending resource depletion attacks on implantable medical devices. In: 2010 IEEE global telecommunications conference GLOBECOM 2010, pp. 1–5. IEEE
– reference: Eberle W, Penders J, Yazicioglu RF (2011) Closing the loop for deep brain stimulation implants enables personalized healthcare for Parkinson’s disease patients. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1556–1558. IEEE
– reference: Rakovic V, Adamovski R, Risteski A, Gavrilovska L (2020) Improving energy efficiency and reliability in WuR-based IoT systems: an error correction approach. Wirel Pers Commun pp. 1–12
– reference: Wang A, Wang J, Lin H, Zhang J, Yang Z, Xu K (2016) Biomedical event extraction based on distributed representation and deep learning. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 775. IEEE
– reference: RahmanMSKhalilIYiXReversible biosignal steganography approach for authenticating biosignals using extended binary Golay codeIEEE J Biomed Health Inform2020251354610.1109/JBHI.2020.2988449
– reference: PycroftLBoccardSGOwenSLSteinJFFitzgeraldJJGreenALAzizTZBrainjacking: implant security issues in invasive neuromodulationWorld Neurosurg20169245446210.1016/j.wneu.2016.05.010
– volume: 280
  start-page: 951
  issue: 11
  year: 1998
  ident: 140_CR28
  publication-title: JAMA
  doi: 10.1001/jama.280.11.951
– ident: 140_CR37
  doi: 10.1109/MWSCAS54063.2022.9859332
– ident: 140_CR55
  doi: 10.1109/SP.2014.40
– ident: 140_CR58
  doi: 10.1145/3394885.3431639
– ident: 140_CR10
  doi: 10.1145/3176258.3176310
– volume: 29
  start-page: 19
  issue: 5
  year: 2020
  ident: 140_CR38
  publication-title: Int J Adv Sci Technol
– volume: 6
  start-page: 218
  issue: 6
  year: 2017
  ident: 140_CR44
  publication-title: IET Networks
  doi: 10.1049/iet-net.2017.0110
– volume: 145
  start-page: 1118
  issue: 6
  year: 2017
  ident: 140_CR40
  publication-title: Epidemiol Infect
  doi: 10.1017/S0950268816003216
– ident: 140_CR52
– ident: 140_CR51
– volume: 92
  start-page: 454
  year: 2016
  ident: 140_CR54
  publication-title: World Neurosurg
  doi: 10.1016/j.wneu.2016.05.010
– ident: 140_CR16
  doi: 10.1109/SM2C.2017.8071825
– volume: 7
  start-page: 21990
  year: 2019
  ident: 140_CR48
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2898154
– ident: 140_CR8
  doi: 10.1109/GLOCOM.2010.5685228
– ident: 140_CR41
  doi: 10.1155/2021/6611091
– volume: 4
  start-page: 1
  issue: 1
  year: 2018
  ident: 140_CR27
  publication-title: Bioelectron Med
  doi: 10.1186/s42234-018-0015-6
– ident: 140_CR9
  doi: 10.1145/2991079.2991094
– ident: 140_CR46
  doi: 10.1016/j.asoc.2019.105970
– volume: 38
  start-page: 828
  issue: 4
  year: 2018
  ident: 140_CR42
  publication-title: Bioprocess Biosyst Eng
– ident: 140_CR60
  doi: 10.1109/VTS48691.2020.9107582
– ident: 140_CR3
  doi: 10.1161/JAHA.119.015139
– volume: 67
  start-page: 239
  year: 2017
  ident: 140_CR29
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.08.065
– volume: 5
  start-page: 8869
  year: 2017
  ident: 140_CR30
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2694446
– ident: 140_CR59
  doi: 10.1109/ISCAS.2019.8702493
– volume: 55
  start-page: 272
  year: 2015
  ident: 140_CR6
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2015.04.007
– volume: 1
  start-page: 12
  issue: 1
  year: 2020
  ident: 140_CR39
  publication-title: Journal of Safety Science and Resilience
  doi: 10.1016/j.jnlssr.2020.06.007
– ident: 140_CR17
  doi: 10.1109/AICAS54282.2022.9869935
– volume: 163
  year: 2021
  ident: 140_CR34
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113807
– ident: 140_CR50
– volume: 63
  start-page: 721
  issue: 4
  year: 2015
  ident: 140_CR19
  publication-title: IEEE Trans Biomed Eng
– volume: 25
  start-page: 35
  issue: 1
  year: 2020
  ident: 140_CR49
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.2988449
– volume: 66
  start-page: 61
  year: 2021
  ident: 140_CR4
  publication-title: Prog Cardiovasc Dis
  doi: 10.1016/j.pcad.2021.06.003
– ident: 140_CR26
  doi: 10.1126/scitranslmed.aaw4949
– ident: 140_CR14
  doi: 10.1155/2020/5057801
– ident: 140_CR36
  doi: 10.1109/BIBM.2016.7822620
– ident: 140_CR13
  doi: 10.1007/978-981-15-2329-8_22
– volume: 37
  start-page: 1030
  issue: 6
  year: 2020
  ident: 140_CR24
  publication-title: Diabet Med
  doi: 10.1111/dme.14252
– volume: 71
  start-page: 1
  year: 2022
  ident: 140_CR35
  publication-title: IEEE Trans Instrum Meas
– ident: 140_CR18
  doi: 10.1109/EMBC.2016.7592043
– volume: 9
  start-page: 684
  issue: 9
  year: 2016
  ident: 140_CR15
  publication-title: Energies
  doi: 10.3390/en9090684
– volume: 15
  start-page: 842
  issue: 4
  year: 2021
  ident: 140_CR33
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/1932296820922622
– ident: 140_CR47
  doi: 10.1016/j.energy.2020.119397
– volume: 12
  start-page: 2968
  issue: 1
  year: 2021
  ident: 140_CR57
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-23180-2
– ident: 140_CR25
  doi: 10.1109/ICCD56317.2022.00091
– volume: 6
  start-page: 14
  issue: 9
  year: 2018
  ident: 140_CR12
  publication-title: J Comput Commun
  doi: 10.4236/jcc.2018.69002
– ident: 140_CR22
  doi: 10.1109/IEMBS.2011.6090453
– ident: 140_CR43
  doi: 10.1007/978-3-031-45878-1_14
– volume: 13
  start-page: 357
  issue: 2
  year: 2021
  ident: 140_CR23
  publication-title: Symmetry
  doi: 10.3390/sym13020357
– volume: 7
  start-page: 81542
  year: 2019
  ident: 140_CR32
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923707
– ident: 140_CR45
  doi: 10.1007/s11277-020-07464-2
– ident: 140_CR5
  doi: 10.1145/2228360.2228364
– start-page: 1
  volume-title: The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems
  year: 2019
  ident: 140_CR56
– ident: 140_CR7
  doi: 10.1109/SP.2008.31
– ident: 140_CR2
– ident: 140_CR1
  doi: 10.1007/978-1-4614-9434-8_2
– ident: 140_CR20
  doi: 10.1007/s00125-021-05391-w
– volume: 15
  start-page: 403
  issue: 6
  year: 2018
  ident: 140_CR11
  publication-title: Expert Rev Med Devices
  doi: 10.1080/17434440.2018.1483235
– volume: 24
  start-page: 603
  issue: 2
  year: 2019
  ident: 140_CR31
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2908488
– volume: 117
  start-page: 1130
  issue: 5
  year: 2013
  ident: 140_CR21
  publication-title: Anesth Analg
  doi: 10.1213/ANE.0b013e3182973687
– ident: 140_CR53
SSID ssib031263793
ssj0002734763
Score 2.248498
Snippet Biosignal monitoring using wearable and implantable devices (WIMDs) is driving the advent of highly personalized medicine. However, such devices may suffer...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 12
SubjectTerms Algorithms
Artificial intelligence
Biosensors
Bladder
Circuits and Systems
Closed loop systems
Closed loops
Component reliability
Computer Hardware
Control systems
Control theory
Controllers
Data acquisition
Electronic systems
Energy consumption
Engineering
Error correction & detection
Glucose
Information Systems Applications (incl.Internet)
Machine learning
Medical equipment
Neural networks
Nonlinear control
Nonlinear systems
Pacemakers
Pancreas
Patients
Physiology
Prediction models
Predictive control
Quality of life
Real time
Sensors
System reliability
Systems and Data Security
Target acquisition
Transplants & implants
Urogenital system
Wearable computers
SummonAdditionalLinks – databaseName: SpringerLink [Stanislaus State]
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADgwFiMFAO3CBS27RNe4RpE4dpQrw0can6SGBoaqd1IPHvcdpkAwQHOPXQxKpsJ_5U258BTv3Uiblt-9SPmUNdjDgUo1xCXSndmLsSTV6RuA74cBiMRuG1bgorTbW7SUlWN_Wi2U1BB9VNzGhFCkPdVVjDcBeogQ03tw_Gi5jt-Mx43YsmcOHVSDUM9yFlCLh198zPYr9GqCXs_JYprQJQv_m_T9-GLQ04yUXtITuwIvIWNM0wB6LPdgs2PzET7sJjL39WTBz5E0GESFThck3o_U4KSbqTohQZHRTFlOhMD9HU50T92MX18YSq7hJyOS5UiQguUFPXVO_7Htz3e3fdK6rHMNBUcfVQnggnsVyWhPjI7CDhcYCGzbxQWJ4MM575kvk-tzzBuJSWLQUPUuHwOGU8CRjbh0Ze5OIASBJndupluNWK3QDlIV6RiJgFs1Ins0Ubzozqo2nNthEteJUrJUaoxKhSYuS2oWOsE-mTV0YMMQ7eM5xbbTg31li-_l3a4d-WH8GGg_imLkfrQGM-exXHsJ6-zcfl7KTyyA_oDda8
  priority: 102
  providerName: Springer Nature
Title Enhancing the Reliability of Closed-Loop Medical Systems with Real-Time Biosignal Modeling
URI https://link.springer.com/article/10.1007/s41635-023-00140-4
https://www.proquest.com/docview/3081510770
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2509-3436
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002734763
  issn: 2509-3428
  databaseCode: P5Z
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2509-3436
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002734763
  issn: 2509-3428
  databaseCode: K7-
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2509-3436
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002734763
  issn: 2509-3428
  databaseCode: M7S
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 2509-3436
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002734763
  issn: 2509-3428
  databaseCode: BENPR
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 2509-3436
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002734763
  issn: 2509-3428
  databaseCode: RSV
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7o9KAH50-czpGDNw22Tdu0J3EyEZQx_IV4KW2T6GS006ngf-9LmjoV9OIlPTQNNN9L3kfy3vcAdsPcS7nrhjRMmUd99DgUvVxGfaX8lPsKITcirue8349ub-OBPXCb2LDKek80G7Uoc31GfsDQd6H9cO4cjp-orhqlb1dtCY1ZmNMqCa4J3bus7Ym5Xshq-3u0Ui7cFFdDxx9ThtTb5tGYbDrNTXS6MqNGdYb6333VlID-uDM1ruik-d-fWIYlS0LJUWU1KzAji1Vo1gUeiF3vq7D4Ra1wDe56xYNW5yjuCbJGooOZK5Hvd1IqcjwqJ1LQ87IcE3v7Q6wcOtGHvdg_HVGdcUK6w1KHjWAHXYlN58Ovw_VJ7-r4lNrSDDTX-j2UZ9LLHJ9lMT6EG2U8jRBsEcTSCVQsuAgVC0PuBJJxpRxXSR7l0uNpzngWMbYBjaIs5CaQLBVuHgj81En9CMdDDqOQRUvm5J5wZQv2ahCScaXAkXxqLRvIEoQsMZAlfgva9cwndjVOkum0t2C_xm76-vfRtv4ebRsWPOQ4VUhaGxovz69yB-bzt5fh5LkDc91ef3DRgdkzTjvGMrEdBHfYXlzefADus-VP
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hWolyKAWKWB6tD-UEFontjZNDhYCCQLtdcQAJcQlJbPMQSpbdBcSf6m9k7MRsqURvHDjlEMdKMp9nPj_mG4AfUcEyGYYRjTLOqMCIQzHK5VQYIzIpDJrcibh2Za8Xn54mRxPwx-fC2GOV3ic6R62qwq6Rb3KMXYgfKYOt_i21VaPs7qovoVHDoqMfH3DKNvx5-Avtu8bY_t7x7gFtqgrQwkrPUJlrlgeC5wleVBjnMovxPVU70UHbJEqqyPAokkFbc2lMEBot40IzmRVc5rFdAEWX_0HwWNpx1ZHU45eHLOIe79eNdIx0xdyQaCSUI9Vv8nZc9p7lQjY9mlOnckPFy9g4Jrz_7NG60Lc_895-2hf43JBssl2PilmY0OUczPgCFqTxZ3Mw_Zca4zyc7ZWXVn2kvCDIiok9rF2LmD-SypDdm2qoFe1WVZ80u1ukkXsndjEb22c31GbUkJ2ryh6LwQa20pzN9_8KJ2_yvQswWValXgSSZyos2gofDTIRY3_I0QzOEjQPCqZC3YJ1b_S0XyuMpM9a0g4iKUIkdRBJRQtWvKXTxtsM07GZW7DhsTK-_XpvS__v7TtMHRz_7qbdw15nGT4x5HP18bsVmBwN7vQqfCzuR1fDwTc3DgicvzWGngASsD0S
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20iujBalWsVt2DN12aZLfZ5Ki1RbGUgh8ULyHJ7mpFkmKr4L93Nh9aRQ_iKYfsLmRnNvOSmfcG4NCNnVDYtkvdkDmUY8ShGOUiyrXmoeAaTZ6JuPZEv-8Nh_5ghsWfVbuXKcmc02BUmpJpcyx184P4ZmCEYRYzmgnEUD4PC9wU0pvv9avb0qOY7bis9MDHQsxFZO3VMPT7lCH4Lpg0Py_7NVp9QtBvWdMsGHWr_3-MNVgtgCg5yT1nHeZUUoNq2eSBFGe-BiszioUbcNdJHoxCR3JPEDkSU9CcC32_kVST9lM6UZL20nRMigwQKSTRifnhi-PDJ2pYJ-R0lJrSERxgurEZTvwm3HQ71-1zWrRnoLHR8KEiUk5kcRb5eJG2F4nQQ4PLlq-slvalkK5mriuslmJCa8vWSnixckQYMxF5jG1BJUkTtQ0kCqUdtyROtULu4XqIYzQiacWs2JG2qsNRaYZgnKtwBB96y9kmBriJQbaJAa9Do7RUUJzIScAQ--D7RwirDselZT5v_77azt-GH8DS4Kwb9C76l7uw7CAEyivWGlCZPr-oPViMX6ejyfN-5qjv5wLihA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+Reliability+of+Closed-Loop+Medical+Systems+with+Real-Time+Biosignal+Modeling&rft.jtitle=Journal+of+hardware+and+systems+security&rft.au=Mahmud%2C+Shakil&rft.au=Zareen%2C+Farhath&rft.au=Olney%2C+Brooks&rft.au=Karam%2C+Robert&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=2509-3428&rft.eissn=2509-3436&rft.volume=8&rft.issue=1&rft.spage=12&rft.epage=24&rft_id=info:doi/10.1007%2Fs41635-023-00140-4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2509-3428&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2509-3428&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2509-3428&client=summon